1G.3: Rheological Design for Efficient Fluid Power

Jonathon Schuh: University of Illinois at Urbana-Champaign

Yong Hoon Lee: University of Illinois at Urbana-Champaign
James Allison: University of Illinois at Urbana-Champaign
Randy Ewoldt: University of Illinois at Urbana-Champaign
Motivation

- Decrease friction in lubricated sliding contact
 - Decrease shear stress
 - Increase normal force
 - Approach: surface textures and Non-Newtonian fluids
- Determine optimal design of surface textures and lubricant
Motivation (Continued)

Weissenberg

\[Wi = \lambda \dot{\gamma} \]

Non-linear: Amplitude dependent properties

Viscoelastic: Time-dependent properties

Deborah

\[De = \frac{l}{t_{char}} \]

Motivation (Continued)

Pipkin space [1]

Controlled by geometry

Geometry + Fluid

Motivation (Continued)

\[Wi = \lambda \dot{\gamma} \]

- Generalized Newtonian Fluid
- Ordered Fluid Expansion
- Non-linear models

\[De = \frac{l}{t_{char}} \]

Linear Viscoelastic
Outline

- Experimental precision and challenges
- Experimental results surface textures and Newtonian fluids
 - Origin of the Pipkin space
- Experimental results surface textures and Non-Newtonian fluids
 - Exploring more of Pipkin space
Materials Tested
Non-dimensional ratios govern behavior [2]

Materials Tested: Newtonian Lubricants

![Graph showing the viscosity (η [Pa s]) of two Newtonian lubricants (S600 and S60) as a function of temperature (°C). The graph illustrates the decrease in viscosity with increasing temperature.]
Experimental Setup

- Gap controlled rotational rheometer
 - DHR-3 by TA instruments
 - Precision aligned for tribo-rheometry [2]
- Parallel disks D=40 mm
 - Top: flat ($R_{RMS}=3.33 \, \mu m$), rotating, stainless
 - Bottom: textured, 1018 steel, attached with Crystalbond

Key Challenges:
- Gap error
- Non-texture normal forces

Gap Error

- Risk of misinterpreting shear stress reduction that is not due to the textures [3,4]
- Gap zeroing calibration based on contact force
- Squeeze flow of air produces force
- Calibrated $\varepsilon = 19.0 \pm 0.69$ μm using Newtonian oil with $\eta = 0.14$ Pa s

\[
a = \frac{t}{1+\frac{1}{h_a}}
\]

\[
\frac{1}{a} = \frac{1}{t} + \frac{1}{h_a}
\]

Non-Texture Normal Forces

- Risk of misinterpreting normal forces that are not due to the surface textures [5-7]
 a) Inertia: \(F_{\text{inertia}} = \frac{3}{40} R^4 \) \(h^2 \)
 b) Surface Tension: \(F_N = C \)
 c) Non-Parallelism: \(F_{np} = \frac{R^4}{h^2} \left(0.256 \frac{h}{h} \right) \)

Shear Stress Reduction: Newtonian Fluids

Real shear stress reduction through use of textures

\[
a = \frac{2(h_a + e)}{R^4} M
\]
Asymmetric textures produce forces above experimental limit through viscous effects.
Effective Friction Coefficient

Asymmetric textures decrease friction. Optimal β.

\[\frac{F_t}{F_N} = \frac{M}{R} \]
Conclusions: Newtonian Fluids

- Surface textures decrease shear stress
- Symmetry must be broken in order to produce normal forces above experimental limit
 - Sign of force depends on direction of motion
- Normal forces are produced by viscous effects up to Re_h=1.21
- Optimal angle β exists for decreasing friction with asymmetric surface textures
Polyisobutylene (PIB) has been used as an additive for enhancing mechanical properties [8] and modifying viscosity [9]

decrease temperature dependence of viscosity

- Dissolves in mineral oil
- 0.5wt% PIB (M_W~1,000,000) in mineral oil (highly refined, S6, η=9.62 mPa s)
- c/c*=0.0774 (dilute solution)

Non-Newtonian Rheology Characterization

\[\eta = \eta_\infty + \frac{\eta_0 - \eta_\infty}{\left(1 + (\lambda \dot{\gamma})^2\right)^{(1-n)/\alpha}} \]

- \(\eta_\infty = 9.62 \text{ mPa s} \)
- \(\eta_0 = 30 \text{ mPa s} \)
- \(\lambda = 7.5 \text{ ms} \)
- \(n = 0.8125 \)
- \(\alpha = 2 \)
Shear Stress Reduction

\[\eta_a = \frac{2(h_a + \varepsilon)}{\pi R^4} \left(\frac{3}{4} + \frac{1}{4} \frac{d \ln(M)}{d \ln(\dot{\gamma}_R)} \right) \frac{M}{\Omega} \]

Surface textures reduce viscosity beyond shear thinning
Normal Force Production

Asymmetric surface textures produce normal forces above viscoelastic response.
Effective Friction Coefficient

Asymmetric textures decrease friction. Optimal β
Conclusions: Non-Newtonian Fluids

- Surface textures decrease shear stress beyond shear thinning.
- Symmetry must be broken to produce normal forces above viscoelastic response:
 - Normal forces are always positive.
- Optimal angle β exists for decreasing friction with asymmetric surface textures:
 - Friction coefficient is smaller with Non-Newtonian fluids than Newtonian.
Future Work

- Examine relaxation time scale effects
 - Change concentration of polymer in solution
 - Explore more of Pipkin space

- Mathematically model surface textures and Non-Newtonian fluids
 - 2nd order fluid
 - 3D flow theorem of Giesekus with Reynolds equation solver

- Determine optimal design of textures and fluid
 - Direct optimization with Reynolds equation
 - Adaptive surrogate modeling techniques [10]
 - Experimentally test optimal texture and fluid

Acknowledgements and Contact Information

Ewoldt Research Group

Specific People
Michael Johnston (MS UIUC, 2014)
Nathan Bristow (BS UIUC, 2014)
Nikita Dutta (REU summer 2014)
Feargus MacFhionnlaoich (REU summer 2015)

Jonathon Schuh (schuh4@illinois.edu)

Funding

Jonathon Schuh (schuh4@illinois.edu)
Non-Dimensionalization

\[
(F_N, a) = f(h, R, R_c, R_t, D, h, R, R_c, R_t, h, R, R_c, R_t, h, D)
\]

By Buckingham Pi Theorem:

\[
\left(\frac{F_N}{R^2 \left(\frac{R}{h} \right)^a} \right) = \left(\frac{h}{R}, \frac{h}{R_c}, \frac{h}{R_t}, \frac{h}{D}, h^2 \right)
\]
Table

<table>
<thead>
<tr>
<th></th>
<th>h [mm]</th>
<th>D [mm]</th>
<th>R_c [mm]</th>
<th>R_t [mm]</th>
<th>R [mm]</th>
<th>ϕ [rad]</th>
<th>h/D [-]</th>
<th>h/R_c [-]</th>
<th>h/R_t [-]</th>
<th>h/R [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>0.069</td>
<td>0.513</td>
<td>3.655</td>
<td>0.770</td>
<td>5.130</td>
<td>0.628</td>
<td>0.135</td>
<td>0.019</td>
<td>0.090</td>
<td>0.013</td>
</tr>
<tr>
<td>T2</td>
<td>0.169</td>
<td>1.257</td>
<td>8.952</td>
<td>1.885</td>
<td>12.57</td>
<td>0.628</td>
<td>0.135</td>
<td>0.019</td>
<td>0.090</td>
<td>0.013</td>
</tr>
<tr>
<td>T3</td>
<td>0.269</td>
<td>2.000</td>
<td>14.25</td>
<td>3.000</td>
<td>20.00</td>
<td>0.628</td>
<td>0.135</td>
<td>0.019</td>
<td>0.090</td>
<td>0.013</td>
</tr>
<tr>
<td>T4</td>
<td>0.319</td>
<td>2.372</td>
<td>16.90</td>
<td>3.558</td>
<td>23.72</td>
<td>0.628</td>
<td>0.135</td>
<td>0.019</td>
<td>0.090</td>
<td>0.013</td>
</tr>
<tr>
<td>T5</td>
<td>0.419</td>
<td>3.115</td>
<td>22.20</td>
<td>4.673</td>
<td>31.15</td>
<td>0.628</td>
<td>0.135</td>
<td>0.019</td>
<td>0.090</td>
<td>0.013</td>
</tr>
</tbody>
</table>

Equations

- $h = 1.4 \text{ Pa s}$
- $r = 846.4 \text{ kg/m}^3$

Diagrams

- Left: Graph showing τ [Pa] vs. Ω [rad/s]
- Right: Graph showing η [-] vs. $Re_n = \rho \Omega h^2 / \eta$ [-]
\begin{table}
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline
 & \(h \) [mm] & \(D \) [mm] & \(R_c \) [mm] & \(R_t \) [mm] & \(R \) [mm] & \(\beta \) [rad] & \(\varphi \) [rad] & \(h/D \) [--] & \(h/R_c \) [--] & \(h/R_t \) [--] & \(h/R \) [--] \\
\hline
T1 & 0.069 & 0.142 & 3.655 & 0.770 & 5.130 & 0.093 & 0.628 & 0.485 & 0.019 & 0.090 & 0.013 \\
T2 & 0.169 & 0.348 & 8.952 & 1.885 & 12.57 & 0.093 & 0.628 & 0.485 & 0.019 & 0.090 & 0.013 \\
T3 & 0.269 & 0.554 & 14.25 & 3.000 & 20.00 & 0.093 & 0.628 & 0.485 & 0.019 & 0.090 & 0.013 \\
T4 & 0.319 & 0.657 & 16.90 & 3.558 & 23.72 & 0.093 & 0.628 & 0.485 & 0.019 & 0.090 & 0.013 \\
T5 & 0.419 & 0.863 & 22.20 & 4.673 & 31.15 & 0.093 & 0.628 & 0.485 & 0.019 & 0.090 & 0.013 \\
\hline
\end{tabular}
\end{table}

\begin{align*}
\text{h} &= 1.4 \text{ Pa s} \\
\text{r} &= 846.4 \text{ kg/m}^3
\end{align*}

\begin{figure}
\centering
\begin{subfigure}{0.49\textwidth}
\centering
\begin{logloggraph}
\addplot[black, mark=square, mark options=square filled] coordinates { (0.1, 100) (1, 10) (10, 1) (100, 0.1) (1000, 0.01) };
\addplot[red, mark=triangle, mark options=triangle filled] coordinates { (0.1, 100) (1, 10) (10, 1) (100, 0.1) (1000, 0.01) };
\addplot[blue, mark=diamond, mark options=diamond filled] coordinates { (0.1, 100) (1, 10) (10, 1) (100, 0.1) (1000, 0.01) };
\addplot[green, mark=x, mark options=x filled] coordinates { (0.1, 100) (1, 10) (10, 1) (100, 0.1) (1000, 0.01) };
\addplot[orange, mark=star, mark options=star filled] coordinates { (0.1, 100) (1, 10) (10, 1) (100, 0.1) (1000, 0.01) };
\end{logloggraph}
\caption{\(\tau, p \) [Pa]}
\end{subfigure}
\begin{subfigure}{0.49\textwidth}
\centering
\begin{logloggraph}
\addplot[black, mark=square, mark options=square filled] coordinates { (0.1, 100) (1, 10) (10, 1) (100, 0.1) (1000, 0.01) };
\addplot[red, mark=triangle, mark options=triangle filled] coordinates { (0.1, 100) (1, 10) (10, 1) (100, 0.1) (1000, 0.01) };
\addplot[blue, mark=diamond, mark options=diamond filled] coordinates { (0.1, 100) (1, 10) (10, 1) (100, 0.1) (1000, 0.01) };
\addplot[green, mark=x, mark options=x filled] coordinates { (0.1, 100) (1, 10) (10, 1) (100, 0.1) (1000, 0.01) };
\addplot[orange, mark=star, mark options=star filled] coordinates { (0.1, 100) (1, 10) (10, 1) (100, 0.1) (1000, 0.01) };
\end{logloggraph}
\caption{\(\eta$, F_N \)}
\end{subfigure}
\end{figure}

\begin{align*}
\eta &= 1.4 \text{ Pa s} \\
\text{r} &= 846.4 \text{ kg/m}^3
\end{align*}
S60 Shear Stress Reduction

![Graph showing shear stress reduction with edge shear rate and different plate angles.](image-url)
S60 Normal Force Production

![Diagram showing normal force production vs angular velocity for different plate geometries and thicknesses.](image-url)

- **A** (Flat plate, $\beta=5.3^\circ$)
- **B** (519 μm, $\beta=9.4^\circ$)
- **C** (269 μm, $\beta=14^\circ$)
- **D** (1019 μm, $\beta=21.7^\circ$)
- **E** (Symmetric)

Legend:
- Orange: 1019 μm
- Green: 519 μm
- Blue: 269 μm
- Gray: Exp Limit

Axis:
- $F_c - F_{c0}$ [N]
- Angular Velocity Ω [rad/s]
S60 Normal Force Scaling

![Graph showing force scaling with angular velocity for different plate geometries and thicknesses.](image-url)
S60 Effective Friction Coefficient

\[\frac{F_T}{F_N} = \frac{M}{R} \]

![Graph showing effective friction coefficient for different angles and plate types.](Image)
Reynolds Equation Solver: Validation

![Graph showing the error in the computed solution as a function of the polynomial degree. The error is expressed as \(|F_{\text{true}} - F_{\text{comp}}| \) on a logarithmic scale, and the polynomial degree is on the x-axis. The graph includes a line with the label \(e^{-N} \) scaling and a note that \(R_o - R_i = 1e-6 \).]
Reynolds Equation Region of Applicability

- Left graph: Angular Velocity Ω vs. Total Gap Height h [mm]
 - $h < 0.1R$
 - $Re_h < 0.1$
 - $Na < 0.1$
- Right graph: Asymmetric Texture Angle β vs. Nominal Gap Height h_0 [mm]
 - $h_0 + D < 0.1R$
 - Applicability Region
Shear Stress Reduction: Reynolds Equation

\[M = N_{tex} \int_{R_i}^{R_o} \int_{-j/2}^{j/2} z \, dr \, (rd) \, r \]

\[a = \frac{2(h_a + \theta)}{R^4} M \]

![Graph showing data points and line indicating Reynolds vs Experimental shear stress reduction.](image-url)
Normal Force Production: Reynolds Equation

\[F_{N_{\text{Reynolds}}} = F_{\text{exp}} \]

\[F_{N_{\text{Experimental}}} \]

\[|F_{N_{\text{Reynolds}}}| \]

\[|F_{N_{\text{Experimental}}}| \]

2015 Fluid Power Innovation & Research Conference
Effective Friction Coefficient: Reynolds Equation

\[\mu^* \text{ vs. } \beta \text{ [°]} \]

- Exp
- Sim

- 1019 µm
- 519 µm
- 269 µm