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Abstract

In this article, general combined plant and control design or co-design problems are ex-
amined. Previous work in co-design theory imposed restrictions on the type of problems that
could be posed. This article lifts many of those restrictions. The problem formulations and
optimality conditions for both the simultaneous and nested solution strategies are given. Due
to a number of challenges associated with the optimality conditions, practical solution con-
siderations are discussed with a focus on the motivating reasons for using direct transcription
in co-design. This article highlights some of the key concepts in general co-design includ-
ing general coupling, the differences between the feasible regions for each strategy, general
boundary conditions, inequality path constraints, system-level objectives, and the complexity
of the closed-form solutions. Three co-design test problems are provided. A number of research
directions are proposed to further co-design theory including tailored solution methods for re-
ducing total computational expense, better comparisons between the two solution strategies,
and more realistic test problems.

1 Introduction

Many dynamic engineering system design problems contain two groupings of the design variables:
plant (or artifact) and control. For instance, consider the system-level design of a robotic manipu-
lator. The plant design may comprise the geometric properties of the links and the control design
may be embodied by the joint torque time trajectories for a specific task [1]. Many authors have
shown the benefit of a combined strategy rather than a sequential approach [2–6]. With a sequen-
tial approach, the plant is optimized initially, followed by the controller [6, 7]. In this article, we
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focus on two solution strategies appropriate for combined plant and controller design or co-design:
simultaneous and nested.

The simultaneous solution strategy optimizes both the plant and control variables in same op-
timization formulation. With the nested strategy, an outer optimization loop optimizes the plant
design, and an inner optimization loop identifies the optimal control for each plant design tested
by the outer loop [6,7]. These two strategies are selected for a few reasons beyond them being the
most studied and used in the literature.

First, the simultaneous strategy is the most fundamental representation of an integrated design
problem [8]. On the other hand, the nested strategy is a specific reorganization of the optimization
problem based on the plant and control disciplines. Multidisciplinary design optimization (MDO)
is a field of research that investigates design methods for systems with multiple disciplines [7, 8].
However, if we are limited to single-system problems and implementations that do not partition
the system across trajectories, there are a limited number of appropriate MDO methods suitable
for co-design. One reason for this is that many MDO formulations were developed in a way that
does not explicitly address the dynamic nature of general co-design problems [7]. This has led to
partitioning schemes without full consideration of the coupling in the system. Allison and Nazari
developed an augmented Lagrangian coordination method for co-design, but only accounted for
unidirectional (plant) coupling [9]. The nested approach naturally handles single-system problems,
bidirectional coupling, and the various trajectories in the problem. Another important motivating
reason for reorganizing the original problem is to employ specialized optimization algorithms to
solve specific subproblems [9, 10]. A number of efficient solution methods for specific problem
forms can be utilized with the nested strategy. However, as it will be discussed throughout this
article, both of these strategies have their drawbacks. Many of these issues are well known for
simultaneous strategy, motivating the fields of MDO and distributed optimization [8]. The nested
strategy is not amenable to coarse-grained parallelism and can be computationally intensive [9].
Additionally, it can have potential feasibility issues.

Here we consider co-design problems that are well-posed as deterministic dynamic optimiza-
tion (DO) problems [6, 7, 11]. Co-design theory has focused primarily on specific DO formula-
tions; as a result, only limited types of co-design problems fit into the existing frameworks. With a
specific problem structure, a variety of algorithms have been developed to provide numerical solu-
tions, and detailed analysis of the coupling and partitioning has been investigated [6,12–18]. There
are even some promising tailored iterative sequential methods for solving specific co-design prob-
lems [19]. Such works have made considerable progress towards addressing specific challenges
found in certain co-design problems. However, there has been less attention towards the general
co-design problem (i.e., a co-design formulation with no restrictions) perhaps due to the lack of
efficient solution techniques and continuing legacy design practices that treat certain problem ele-
ments as naturally separate [7].

Recently, numerical solution methods have been utilized to solve co-design problems that are
not captured by previous problem definitions [7,11]. Nontraditional problem formulation elements
include system-level objective functions, general inequality path constraints, and general boundary
conditions [1–5, 20–22]. With these nontraditional problem elements, much of the previous work
in co-design theory does not apply. An essential element of engineering design optimization is
an appropriate problem formulation. A thorough analysis of the general co-design formulation is
needed to better allow designers to leverage the advantages intrinsic to the co-design methodology.

One of the numerical solution methods recently applied to co-design problems is known as
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direct transcription (DT), which approximates the infinite-dimensional DO problem with a finite
nonlinear program (NLP) that can be solved with standard NLP solvers [3, 23–25]. DT has a
number of favorable properties that support the efficient generation of solutions to general co-
design problems [3, 7, 11].

In this article, we will explore the general co-design problem with a focus on the simultaneous
and nested solution strategies. Section 2 provides the formulations for the simultaneous and nested
co-design solution strategies and Sec. 3 outlines the necessary conditions for optimality for both.
Section 4 discusses some practical solution considerations relevant to the two strategies. Section 5
presents a number of test problems and finally, Sec. 6 offers the conclusions.

2 Problem Formulation

Here we present the two co-design strategies. First, we state a few assumptions. Initially, the time
horizon t0 ≤ t ≤ t f is assumed to be fixed. Section 3.4 discusses the inclusion of the horizon
boundaries in the co-design problem formulations. Next, only general inequality constraints will
directly appear in the formulations for conciseness of the formulations. Equality constraints are
captured by two inequality constraints (i.e., f (x) = 0 is equivalent to f (x) ≤ 0 and − f (x) ≤ 0).

2.1 Simultaneous Formulation
The general simultaneous co-design problem formulation contains all relevant objectives and con-
straints in a single optimization formulation. The DO problem formulation is:

min
xp,xc

Ψ(xp,xc) =

∫ t f

t0
L

(
t, ξ,xc,xp

)
dt + · · · (1a)

M
(
ξ(t0), ξ(t f ),xc,xp

)
(1b)

subject to: ξ̇ − f
(
t, ξ,xc,xp

)
= 0 (1c)

C
(
t, ξ,xc,xp

)
≤ 0 (1d)

φ
(
ξ(t0), ξ(t f ),xc,xp

)
≤ 0 (1e)

where xp are the plant variables, xc are the control variables, t is the time continuum defined
between t0 and t f , ξ are the states, Ψ is the objective function in Bolza form, L is the Lagrange
(running cost) term,M is the Mayer (terminal cost) term, Eqn. (1c) enforces the dynamics modeled
as a first-order ordinary differential equation, Eqn. (1d) enforces any time-varying path constraints,
and Eqn. (1e) enforces any time-independent constraints. See Ref. [11] for a general discussion of
this co-design formulation and the problem elements.

2.2 Nested Formulation
The alternative solution strategy to the simultaneous formulation in Problem (1) is a nested one
where an outer optimization loop optimizes the plant design, and an inner optimization loop iden-
tifies the optimal control for each plant design tested by the outer loop. Figure 1 illustrates the two

Herber and Allison 3 MD-18-1066



(a) (b)

FIGURE 1: Two co-design solution strategies where è indicates an optimization problem: (a)
simultaneous strategy; (b) nested strategy.

strategies. This is a two-level optimization problem (a subclass of bilevel optimization) [26–28].
The outer-loop problem is defined as:

min
xp

ψ(xp) (2a)

subject to: φo

(
xp

)
≤ 0

F (xp) ≤ 0

 = go(xp) ≤ 0
(2b)

(2c)

where φo are the constraints in φ that only depend on the plant design, go is the collection of the
outer-loop constraints, and {ψ(xp),F (xp)} are two new problem formulation elements that will be
outlined after the following inner-loop formulation:

min
xc

Ψ(x†p,xc) (3a)

subject to: ξ̇ − f
(
t, ξ,xc,x

†
p

)
= 0

C
(
t, ξ,xc,x

†
p

)
≤ 0

φi

(
ξ(t0), ξ(t f ),xc,x

†
p

)
≤ 0

 = gi (·) ≤ 0

(3b)

(3c)

(3d)

where x†p is a candidate plant design, φi are the constraints of φ not in φo, and gi is the collection
of the inner-loop constraints. With both formulations presented, some additional concepts relevant
to two-level optimization problems need to be discussed.

The simultaneous method’s feasible set (or constraint region) is defined as:

Ω =
{
(xp,xc) : go(xp) ≤ 0 and gi(xp,xc) ≤ 0

}
(4)

For a given xp, the inner-loop feasible set is defined by:

Λ =
{
xc : gi(xp,xc) ≤ 0

}
(5)

and then set of potential inner-loop optimal control designs is:

M =
{
xc : xc ∈ arg min

{
Ψ(xp,xc) : xc ∈ Λ

}}
(6)
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For a given xp, M may be empty for some values of its argument, i.e., no feasible control design
exists for the given xp. If xc ∈ M, then the optimal objective function value from the inner loop is:

ψ(xp) = Ψ(xp,xc) (7)

which is used as the objective function of the outer loop, Eqn. (2a). Finally, the feasible set of the
outer loop (known as the induced region) is:

I =
{
(xp,xc) : (xp,xc) ∈ Ω and xc ∈ M

}
(8)

and we note that Ω and I are not the same feasible region. This is the motivation behind the
addition of Eqn. (2c). F (xp) is an additional constraint that may be added to ensure that for all
candidate x†p, Λ† (i.e., Λ with x†p) is nonempty, and is termed the outer-loop feasibility constraint.
We distinguish between xp and x†p because not all points in Λ will be evaluated when using the
nested solution strategy, only a specific set of candidate plant designs. The nested strategy then
limits the feasible directions when compared to the simultaneous strategy. The two formulations
are only equivalent if Ω remains unchanged. This constraint will be discussed more in the following
discussion section.

2.3 Formulation Discussion
Here we discuss the specific problem formulation elements of both approaches, focusing on com-
parisons to the current co-design literature.

2.3.1 Control Design Variables
While plant variables will always be time-independent, control variables may be either time-
independent or infinite-dimensional trajectories (with respect to time). We partition the control
variables into two sets as:

xc =

[
p
u

]
(9)

where p are the control parameters and u are the open-loop control (OLC) variables. The con-
trol parameters are static (time-independent) control variables (e.g., gains). The OLC variables
are infinite-dimensional trajectories through time (e.g., joint torque time profile for a robotic ma-
nipulator). Both types of control design variables are found in the literature, although both types
are not typically in the same design problem. Even if there are no OLC variables, the general
co-design problem is still an infinite-dimensional problem due to the dynamic and path con-
straints. One very special case is when the optimal OLC can be defined with static gains such
as with infinite-horizon linear-quadratic regulator (LQR) [29–31] discussed later in Sec. 4.2.2. See
Refs. [2, 5, 15, 16, 19, 30, 31] for examples with p and Refs. [3, 4, 20–22] for examples with u.

2.3.2 Objective Function
Even though the objective function is partitioned in Eqns. (1a) and (1b), converting between the
Lagrange and Mayer terms is possible [11, 29]. Both forms are present to allow for more natural
formulations of the problem (and to be consistent with the literature).
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A common form of the co-design objective function is:

min
xp,xc

Ψ = wpΨp(xp) + wcΨc

(
xp,xc

)
(10)

where {Ψp,Ψc} are the plant and control objective functions and {wp,wc} are objective weights [6].
While many co-design problems are appropriately partitioned with control and plant specific objec-
tive function terms [2,12–14,16–18,31], others necessitate the general objective form in Eqns. (1a)–
(1b) [1, 2, 4, 20, 22]. These general objective functions are defined at the system level as they
do not necessarily need to be partitioned into control and plant specific terms. Frequently, these
system-level objectives may include one term or terms that are typically only classified as “control”
objective terms.

2.3.3 Path and Boundary Constraints
Equations (1d) and (1e) could be further generalized into a single general constraint form, but
the distinction is important for both the optimality conditions and the numerical approaches used
to find solutions. The difference is primarily based on time dependence. Therefore, path and
boundary constraints could be more appropriately named time-dependent and time-independent
constraints.

Boundary constraints are common to many existing co-design formulations [6, 7, 11]. Tradi-
tional plant-only constraints such geometry or mass constraints are time-independent constraints [3,
17, 18, 31]. Many co-design formulations explicitly require initial condition constraints, but some
co-design problems have unknown initial conditions or periodic constraints [20]. Another set
of boundary constraints is the kinematic relationships in robotics [32]. These constraints might
require an algebraic variable that depends on the states (e.g., the end position of the robotic manip-
ulator depends on the state joint angles and geometric plant variables).

More recently, general path constraints have been included in co-design problems and are
infinite-dimensional constraints [1,3,7,11]. Many traditional engineering constraints can be formu-
lated naturally as path constraints. States or outputs often need to be constrained between allowable
bounds such as temperature, position, force, pressure, deflection, stress, power, etc. These exam-
ples are typically inequality path constraints but equality path constraints are also possible, such
as an automobile following a prescribed drive cycle or ensuring the steady-state optimal tip-speed
ratio is followed by a horizontal axis wind turbine [4]. The inclusion of path constraints is critical
to the usefulness of many co-design studies. Fathy et al. included mixed control-plant constraints:

C
(
t,u(t),xp

)
≤ 0 (11)

but mixed state-control-plant constraints as in Eqn. (1d) are needed to represent many of the engi-
neering constraints mentioned above [6].

2.3.4 Outer-Loop Feasibility Constraint

For the two solution strategies to be successful at finding equivalent system optimal designs, Λ†

must be nonempty for every candidate x†p [6]. Equivalence here means that given an arbitrary
starting point using the nested solution strategy, a converged point is only a minimizer with re-
spect to the simultaneous strategy’s optimality conditions, if and only if Λ† is nonempty for every
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considered x†p. Note, this does not imply that the two strategies will necessarily converge to the
same system optima given identical starting conditions. Since the nested strategy limits the search
space/directions relative to the simultaneous strategy, the converged points may be different in non-
convex problems. Introducing an appropriate outer-loop feasibility constraint is one technique to
ensure this property is satisfied.

Consider again the design of a robotic manipulator. For certain geometric configurations, the
kinematics restrictions of the manipulator may be such that it is unable to reach the prescribed
target. To avoid a candidate xp that has no feasible control solution, we can add a reachability
constraint toF (xp) [1,32]. However, even with this additional constraint, mixed state-control-plant
constraints may be present that cannot be satisfied with the given plant design, such as stress or
deflections [1]. This example helps illustrate that for general co-design problems, these constraints
can be quite difficult (or impossible) to determine.

An important type feasibility constraint is the classic controllability property applicable to lin-
ear systems theory [6]. Unfortunately, controllability is not sufficient to guarantee the nonempti-
ness of Λ† for general co-design problems. For example, if control bounds are provided, then it is
not guaranteed that we can move between arbitrary initial and final positions in finite time.

Many gradient-based optimization schemes can fail when encountering undefined objective
function values, especially if it is challenging to determine suitable feasible values/directions. One
benefit of including an appropriate constraint F (·) is that the feasible directions are now better
known in the outer loop. Many optimizers can try to manage such undefined objective function
values, so it is important to consider the feasibility properties of the co-design problem when
selecting a suitable optimization algorithm for the outer loop. For example, global search strategies
or non-gradient methods could be used. Good (i.e., feasible or near-feasible) starting points can
help avoid these issues.

It is also important to note that this outer-loop feasibility constraint may not strictly be required
to find the system-optimal solution using the simultaneous strategy. Another strategy is to add a
feasibility constraint that restricts Ω such that the desired property holds. This is not ideal since
there will be no guarantee that the nested strategy will produce the system-level optimum, but
might be a necessity for certain co-design problems. The implications of this will be discussed in
the following sections.

3 Necessary Conditions for Optimality

In this section, we describe the necessary conditions for optimality for the two general co-design
strategies from the previous section. Sufficient conditions will not be discussed directly, but are
the Hamiltonian minimization conditions [29,33,34] or second-order conditions on the Lagrangian
for finite-dimensional problems [35]. If a problem is singular, there may be additional sufficient
conditions needed [33, 34]. We also assume that the simultaneous co-design problem is well-
posed, i.e., there exists a solution. See Refs. [29,33,35] for discussions on constraint qualification,
regularity, differentiability, and other relevant properties for a well-posed problem. We begin with
the conditions for the OLC design only.
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3.1 Open-Loop Control Design
The optimal OLC design problem formulation is:

min
u

Ψ =

∫ t f

t0
L (t, ξ,u) dt +M

(
ξ(t0), ξ(t f )

)
(12a)

subject to: ξ̇ − f (t, ξ,u) = 0 (12b)
C (t, ξ,u) ≤ 0 (12c)

φ
(
ξ(t0), ξ(t f )

)
≤ 0 (12d)

which is a subformulation of Problem (1). Similar to the Lagrangian in finite-dimensional opti-
mization [29, 35], the infinite-dimensional constraints can be adjoined to the Lagrange term with
time-varying Lagrange multipliers, creating the Hamiltonian of the problem:

H = L + λTf + µTC (13)

where λ(t) are the costates (multipliers for the state dynamics) and µ(t) are the multipliers for C.
With this control-only formulation, we can directly apply Pontryagin’s minimum principle

(PMP) with path constraints [29, 33, 36] to arrive at the following necessary conditions for opti-
mality (note, �∗ is used to denote an optimal value):

λ̇∗ = −

[
∂H
∂ξ

]∗
(14a)

0 =

[
∂H
∂u

]∗
(14b)

0 =
[
µTC

]∗
, 0 =

[
νTφ

]∗
(14c)

µ∗ ≥ 0, ν∗ ≥ 0 (14d)

0 =

[
λ +

∂M

∂ξ
+ νT∂φ

∂ξ

]∗
t0

, 0 =

[
λ −

∂M

∂ξ
− νT∂φ

∂ξ

]∗
t f

(14e)

where ν are the Lagrange multipliers for φ, Eqn. (14a) is the costate dynamics, Eqn. (14b) is the
control stationarity condition, Eqns. (14c) are the complementary slackness conditions, Eqns. (14d)
are the dual feasibility conditions, and Eqns. (14e) are the initial and final time transversality
conditions. The conditions in Eqn. (14) are in addition to the constraints in Eqns. (12b)–(12d).
The necessary conditions for both strategies can now be derived.

3.2 Co-Design—Simultaneous Strategy
Here we will derive the simultaneous co-design optimality conditions only using PMP. Others have
derived the optimality conditions for similar co-design formulations, but only for very restricted
problem types with significant simplifying assumptions (e.g., unidirectional coupling), and not for
the much more general class of co-design problem formulations addressed here. See Ref. [37] for
early work outside the co-design context. Fathy et al. utilized a combination of the Karush-Kuhn-
Tucker (KKT) conditions and PMP [6].
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Consider the following augmented state vector:

Θ =

[
ξ
xp

]
, Θ̇ =

[
f
0

]
(15)

with the replacement of all plant variables with xp(t0) and, therefore, no dependence on xp(t f ).
Now consider if unconstrained, the choice of initial and final states are, in effect, additional deci-
sion variables that can be modified to satisfy the optimality conditions.

The ξ-dependent terms in Eqn. (14) are Eqns. (14a) and (14e). Applying these conditions to
the “state” plant variables, we have the following additional conditions:

−λ̇∗p =

[
∂H
∂xp

]∗
=

 ∂L∂xp
+ λT ∂f

∂xp
+ λT

p
�
�
��7

0
∂ẋp

∂xp
+ µT ∂C

∂xp


∗

(16a)

0 =

[
λp +

∂M

∂xp
+ νT ∂φ

∂xp

]∗
t0

(16b)

0 =

λp −

�
�
��7

0
∂M

∂xp
− νT

�
�
��7

0
∂φ

∂xp


∗

t f

= λ∗p(t f ) (16c)

Now using the first fundamental theorem of calculus, we can combine these equations into a single
condition:

λ∗p(t f ) = λ∗p(t0) +

∫ t f

t0
λ̇∗pdt (17a)

0 =

[
∂M

∂xp
+ νT ∂φ

∂xp

]∗
t0

+

∫ t f

t0

[
∂L

∂xp
+ λT ∂f

∂xp
+ µT ∂C

∂xp

]∗
dt (17b)

This condition is analogous to the condition found in other derivations of the optimality con-
ditions [6, 37]. Note that the other conditions in Eqn. (14) remain unchanged. Therefore, the
simultaneous co-design optimality conditions are a combination of Eqn. (14) and Eqn. (17b):

λ̇∗ = −

[
∂H
∂ξ

]∗
, 0 =

[
∂H
∂u

]∗
(18a)

0 =
[
µTC

]∗
, 0 =

[
νTφ

]∗
, µ∗ ≥ 0, ν∗ ≥ 0 (18b)

0 =

[
λ +

∂M

∂ξ
+ νT∂φ

∂ξ

]∗
t0

, 0 =

[
λ −

∂M

∂ξ
− νT∂φ

∂ξ

]∗
t f

(18c)

0 =

[
∂M

∂xp
+ νT ∂φ

∂xp

]∗
t0

+

∫ t f

t0

[
∂L

∂xp
+ λT ∂f

∂xp
+ µT ∂C

∂xp

]∗
dt (18d)

3.3 Co-Design—Nested Strategy
We now derive the necessary conditions for the nested strategy where the outer-loop problem is
defined in Problem (2) and the inner loop in Problem (3). The inner-loop optimality conditions
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are defined in Eqn. (14) with only OLC variables. If the inner loop contains p, then the necessary
conditions are analogous to the simultaneous conditions in Eqn. (18) with p replacing xp.

The outer-loop problem is finite-dimensional optimization since neither the dynamics nor path
constraints are present. Therefore, we can directly utilize the KKT conditions [35]. The Lagrangian
for the outer-loop problem is:

L = ψ + χTφo + ηTF (19)

We first express the stationarity condition:

0 =
dL

dxp
=

dψ
dxp

+ χT dφo

dxp
+ ηT dF

dxp
(20a)

=

∫ t f

t0

dL
dxp

dt +
dM
dxp

+ χT dφo

dxp
+ ηT dF

dxp
(20b)

Now the total derivative terms can be explicated [38]:

dL
dxp

=
∂L

∂xp
+
∂L

∂ξ∗
dξ∗

dxp
+
∂L

∂u∗
du∗

dxp
+
∂L

∂p∗
dp∗

dxp
(21a)

dM
dxp

=
∂M

∂xp
+

[
∂M

∂ξ∗
dξ∗

dxp

]
t0

+

[
∂M

∂ξ∗
dξ∗

dxp

]
t f

+
∂M

∂p∗
dp∗

dxp
(21b)

Here we see a number of coupled terms.
The complete set of necessary conditions for the outer loop are then:

0 =
dΨ

dxp
+ χT dφo

dxp
+ ηT dF

dxp
(22a)

χ ≥ 0, η ≥ 0, χTφo = 0, ηTF = 0 (22b)

which are a set of KKT conditions. The conditions in Eqn. (22) are in addition to the constraints
Eqns. (2b) and (2c).

3.4 Free Time
The initial and final time values can be optimization variables as well [6, 11, 29, 33]. Optimal
control problems frequently contain these terms and therefore, appropriate optimality conditions
are provided. Subsequently, these additional optimization variables are typically included in the
inner-loop problem of the nested co-design strategy [6]. However, some of the numerical methods
used jointly with certain co-design strategies lose certain properties when the time horizon is not
fixed (e.g., the specific finite-horizon inner-loop problems that will be discussed in Sec. 4.2.1 that
can be approximated as a convex quadratic program can no longer be approximated in this manner
when considering a variable horizon.). In these situations, it may be more beneficial to place these
additional variables in the outer loop to maintain such properties.

The simultaneous co-design strategy will need one additional equation if t f is free:

0 =

[
∂M

∂t f
+ νT∂φ

∂t f

]∗
+

[
L + λTf + µTC

]∗
t f

(23)
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This is an additional transversality condition with the others in Eqn. (14e) [29, 33].
For a nested approach with t f free in the outer loop, the additional stationary condition dL/dt f =

0 would include:

dL
dt f

=
∂L

∂t f
+
∂L

∂ξ∗
dξ∗

dt f
+
∂L

∂u∗
du∗

dt f
+
∂L

∂p∗
dp∗

dt f
(24a)

dM
dt f

=
∂M

∂t f
+

[
∂M

∂ξ∗
dξ∗

dt f

]
t0

+

[
∂M

∂ξ∗
dξ∗

dt f

]
t f

+
∂M

∂p∗
dp∗

dt f
(24b)

This completes the necessary conditions for optimality for the various problem formulations
and solution strategies. Now some of the computational and practical aspects will be discussed.

4 Practical Solution Considerations

Obtaining solutions only using the optimality conditions in the previous section can be challeng-
ing. Practical formulation limitations, robustness, and computational efficiency also need to be
considered when seeking solutions to co-design problems.

4.1 Obtaining Approximate Solutions
In the previous section, finding an analytic solution that satisfies the optimality conditions is called
an indirect method [23,24]. Although this approach can lead to important insights into the structure
of the solution, it can be quite challenging (or impossible) to solve these equations analytically. If
complicated black box functions or table interpolation is used, analytic forms for their derivatives
do not even exist. Therefore, numerical methods are often employed that provide approximate
solutions to the original problem.

Numeric indirect methods derive explicitly the optimality conditions and then use discretization
to form a boundary value problem (BVP) [24]. If inequality path constraints are present, multiple
BVPs will need to be linked for each arc that a path constraint is active since a new set of differential
algebraic equations will need to be solved. The number of constrained subarcs and the sequence
of constrained/unconstrained arcs, however, are unknown a priori, so it is quite difficult or even
impossible to construct the correct BVP.

Another issue with numeric indirect methods is standard solution procedures are not robust. An
initial guess for the costates must be given, but these are not physical quantities, so there typically
is no good way of providing a reasonable estimate [23]. Furthermore, even with a reasonable guess,
the numerical solution of the costate dynamics in Eqn. (14a) can be very ill-conditioned [34].

An alternative is direct methods [23, 24]. Instead of stating the optimality conditions, the
control and/or state are parametrized using function approximation and the objective function is
approximated using numerical quadrature. This creates a discrete, finite-dimensional problem that
then is optimized using large-scale NLP solvers [24].

The first class of direct methods is the sequential (or shooting) methods, which only parametrize
the control. Given initial conditions and a set of control parameters, the differential-algebraic
equation (DAE) model is solved through conventional DAE solvers (forward simulation) such as
a Runge-Kutta method. Due to the use of conventional DAE solvers, this approach has the advan-
tage of easily finding feasible solutions to the state equations but needs to perform a full simulation
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for each perturbation in the optimization algorithm. Repeated numerical integration of the DAE
model, however, does not guarantee convergence with open-loop unstable systems [24] and the
resulting solution can be very sensitive to the choice of control. This strategy is the easiest to con-
struct out of all the direct methods since reliable and efficient codes for DAE and NLP solvers are
naturally linked [24].

Sequential approaches typically produce low-accuracy solutions and are computationally in-
efficient [23–25, 39]. Many of these issues are due to the inability to handle path and boundary
constraints efficiently. Since the states are calculated through a forward simulation, we must ap-
proximate numerically how local control perturbations will affect the global state trajectory. This
leads to simultaneous approaches that forgo the nested analysis of sequential methods for a large
set of constraints1.

4.1.1 Direct Transcription
The simultaneous approach, also as known as direct transcription (DT), parametrizes both the state
and control trajectories. Most DT methods are represented by the following NLP formulation:

min
U ,Ξ,xp

Nt∑
k=0

wkL
(
tk, ξ(tk),u(tk),xp

)
+M

(
ξ(t0), ξ(t f ),xp

)
(25a)

subject to: ζ
(
t,Ξ,U ,xp

)
= 0 (25b)

C
(
t,Ξ,U ,xp

)
≤ 0 (25c)

φ
(
ξ(t0), ξ(t f ),xp

)
≤ 0 (25d)

where Nt+1 is the number of discrete time points and {t,Ξ,U } are the discretized forms of the time,
states, and controls. The Lagrange term is approximated with numerical quadrature with weights
wk. The dynamic constraint is now enforced through a large number of equality constraints ζ,
termed defect constraints [23–25]. Also, path constraints are now no more complicated than the
dynamic constraints, a key advantage over other solution methods [24, 40].

This new large NLP formulation has a specific structure and sparsity pattern that can be ex-
ploited in NLP solvers to reduce total computational effort [24]. Simultaneous approaches have
been shown to have good convergence properties and handle unstable DAEs [39, 41]. Finally,
these approaches have specific advantages for singular control problems and high-index path con-
straints [41]. This collection of desirable properties makes DT a strong candidate for finding
solutions to general co-design problems.

General overviews of DT theory are available in Refs. [3, 11, 23–25, 41]. Two common direct
transcription schemes include 1) approximating the defect constraints using the trapezoidal rule
and composite trapezoidal quadrature [11, 23, 24]; and 2) approximating the defect constraints
with Lagrange interpolating polynomials on a Legendre-Gauss-Lobatto time grid (pseudospectral
methods) and Gaussian quadrature [25,39,40]. Please see Refs. [3,7,11] for further discussion on

1The sequential and simultaneous methods in this section are entirely different than the sequential design method
mentioned in Sec. 1 and the simultaneous co-design method [3, 7, 24]. The methods in this section find approximate
solutions to DO problems. The design methods are alternative solution methods for problems with plant and control
design variables. For example, one could pose a simultaneous co-design problem and solve it with a sequential (or
shooting) method for dynamic optimization.
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using DT to find solutions to co-design problems. In these co-design studies, DT was demonstrated
to be a suitable method for finding solutions to co-design problems that are more general than
problems solved using earlier theory and methods.

4.2 Specific Forms
In this article, we have presented the most general form of the co-design problem: both a nonlinear
plant outer-loop and nonlinear control inner-loop. However, specific forms of the control subprob-
lem have been utilized heavily in a variety of co-design studies. The primary motivation for these
forms is the efficient generation of solutions for the inner-loop subproblem. These two forms are
linear-quadratic dynamic optimization (LQDO) and the linear-quadratic regulator (LQR).

4.2.1 Linear-Quadratic Dynamic Optimization
Consider the following specific form of the control subproblem in Problem (12):

min
u

∫ t f

t0

[ξu
]T [
Q N
N R

] [
ξ
u

]
+

[
q
r

]T [
ξ
u

] dt + · · · (26a)[
ξTMξ +mTξ

]
t0

+
[
ξTSξ + sTξ

]
t f

(26b)

subject to: ξ̇ − (Aξ +Bu + d) = 0 (26c)
C1ξ +C2u −C3 ≤ 0 (26d)
φ1ξ(t0) + φ2ξ(t f ) − φ3 ≤ 0 (26e)

where t f is finite and any of the matrices (with the exception of {φ,M ,m,S, s}) can be time-
varying. This particular LQDO problem can be approximated as a finite-dimensional quadratic
program (QP) using a DT method (see Ref. [42]) for a more general LQDO problem form). Both
single-step and pseudospectral DT methods can generate sparse QPs for this problem form [11,24].
Under certain conditions, the QP is convex and efficient to solve for even large systems and the
global optimal solution for u is guaranteed.

This form has been utilized in a number of nested co-design studies [11,22]. The simultaneous
strategy cannot be applied with this form since most (if not all) co-design dynamic constraints have
a nonlinear dependence on the optimization variables [6]. For example consider the following
bilinear dynamic constraint: ξ̇ = −kξ, where k is a plant optimization variable. This dynamic
constraint would need to be approximated by quadratic constraints.

4.2.2 Infinite-Horizon Linear-Quadratic Regulator
Consider the following special form of the control-only subproblem: Problem (26) containing only
time-invariant matrices {Q � 0,R � 0,A,B}, no path constraints, simple initial value constraints
(ξ(t0) = ξ0), and is infinite-horizon (t f → ∞). The optimal OLC can then be readily computed
with the solution of the algebraic Riccati equation (ARE):

PA +ATP − PBR−1BTP +Q = 0 (27)
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where P is the unique, positive definite solution and u is:

u∗ = −R−1BTP ∗ξ∗ (28)

This problem form is known as the infinite-horizon, continuous-time LQR [29–31], and is quite
heavily utilized in co-design studies [2, 15, 16, 30, 31]. Solutions of this form can be computed
efficiently and have a number of favorable properties such as a closed-form solution that can be
used to create an equivalent simultaneous formulation [6]. There are additional forms (e.g., finite-
time and time-varying versions) of this type of problem [29, 34] but the computation cost quickly
becomes comparable with highly structured QPs using DT solution methods. However, this prob-
lem structure is simply unsatisfactory in addressing the requirements for some co-design problems
(see Sec. 2.3). For example, Xu and Carrillo have stated that finite-horizon formulations are more
appropriate for practical implementation than infinite-horizon versions [43].

4.3 Comparing the Strategies
A natural question is what solution technique should be used? This section will discuss some of
the research around this question.

4.3.1 Computational Expense
Here we parameterize the solution time for each method with:

Ts = NsT̄s (simultaneous) (29a)

Tn = NnT̄n = Nn

(
T̄o + N̄iT̄i

)
(nested) (29b)

where N is the number of optimization algorithm iterations needed for convergence, T̄ is an average
time, �s is simultaneous strategy, and �n is nested strategy.

Obviously, if Nn > Ns and T̄o > T̄s, then the simultaneous approach is superior, but this
is unlikely as the nested strategy reduces the number of variables and constraints in the outer-
loop problem. This highlights the computational goal of the nested approach. Ideally we seek a
nested strategy that significantly reduces both the number of iterations and time required during
each iteration in the outer loop, while keeping the time required to solve the nested subproblem
small. This parameterization facilities an experimental approach for determining which method is
appropriate. The designer could perform some tests on specific steps in the solution method such
as determining the average inner-loop cost or initial iteration costs. Frequently, the solutions to
multiple co-design problems are desired (such as changing different problem elements or parameter
values) or a particular class of problems is being studied. If such solution experience exists, then
knowledge from previous similar problems can be used to better determine which method should
be selected.

Methods for reducing total computational expense for the general co-design problem with re-
spect to either solution strategy are limited (other than favoring DT over other methods). One
commonly-used approach is to utilize parallel computing when solving the outer-loop problem
when multiple variations on xp need to be evaluated, e.g., parallel finite differences or genetic
algorithms. This will increase the coordination costs but can greatly reduce the overall compu-
tational expense (ideally T̄n → T̄n/Np, where Np is the number of parallel resources). Another
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suggestion from Ref. [44] is to treat plant variables in the simultaneous approach with DT exactly
as in Eqn. (15), where there is a plant variable at each time point and they are all constrained to be
equal (which keeps Jacobian of the constraints and objective function sparse). The development
of guidelines and methods to help address the computational cost for different classes of co-design
problems is left as future work.

4.3.2 Literature-Based Recommendations
Reyer et al. stated that the size and complexity of the simultaneous problem formulation could
make this strategy impractical [13]. A number of authors have agreed with this statement, i.e., the
nested strategy was better suited for their particular problem [4,22,30,45]. In the case of Refs. [30,
45], the studies utilize the LQR for an extremely efficient inner loop, i.e., T̄o + N̄iT̄i was quite
small. In Ref. [4], there was an extreme computational expense associated with changes in the
plant variables (Ti was large), hence minimizing the number of function calls was paramount. In
Ref. [22], there was both a high computational expense for modifying the plant design and the
inner-loop could be solved with a QP.

There are a limited set of studies that claim the opposite. In Ref. [3], the authors state that the
simultaneous strategy is better, but the inner-loop was not solved with a QP even though it was in
the Problem (26) class, so it is hard to fairly compare the strategies. However, it is still hard to
make general recommendations since it is not very common for co-design study to compare the
tradeoffs between the simultaneous and nested strategies for their particular design problem. In
most design studies, only one strategy is needed if it is producing the desired results.

There are some circumstances where the simultaneous strategy might be preferred. For some
problems, it might be the only viable method. For example, it may be impossible to separate
the domains if black-boxes are used. Also, consider the discussion of an empty Ω for a particular
candidate plant design. In this situation, the nested strategy could struggle or fail to find the optimal
solution. Another point is that the nested strategy does not follow the steepest descent direction in
the simultaneous formulation (since the control variables are optimal for the control subproblem).
A simultaneous approach may better utilize the coupling between the plant and control design
variables for faster convergence.

It remains future work to determine if there are conditions such that a well-behaved simultane-
ous co-design formulation becomes more challenging to solve with the nested strategy.

5 Test Problems

In this section, three co-design test problems (abbreviated TP) are defined which highlight some of
the general co-design theory concepts2. Please see also Refs. [1–5,20–22] for examples of complex
co-design problems that utilize nontraditional problem elements in the general co-design problem
class.
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(a) (b)

FIGURE 2: Scalar plant, scalar control problem (TP1) results with q = 10, r = 1, wc = 1, and
wp = 0.3: (a) Ψ(b,K); (b) ψ(b).

5.1 Test Problem 1: Scalar Plant, Scalar Control
The first TP belongs to many early co-design formulations [6, 16] including infinite time horizon,
optimization of control gains, no path constraints, and separate control and plant objectives as in
Eqn. (10). The co-design problem is stated as:

min
b,K

wc

ξ2
0

∫ ∞

0

(
qξ2 + ru2

)
dt + wpb (30a)

subject to: ξ̇ = −bξ + u (30b)
φ1 := ξ(0) − ξ0 = 0 (30c)
φ2 := − b ≤ 0, φ3 := − K ≤ 0 (30d)

where u = −Kξ, b ∈ xp, and K ∈ xc. The results are shown in Fig. 2 for one particular set of
values of the problem parameters.

For this problem, the ARE defined in Eqn. (27) is a single quadratic equation: 0 = q − 2bP −
P2/r. The solution to this equation defines the gains of a full-state feedback optimal control law
and therefore can be used to obtain the potential inner-loop optimal control designs, M, in a nested
formulation. This is visualized in Fig. 2a as the solid black curve. We note that this is a subspace
of Ω, or simultaneous feasible set. Comparing Fig. 2a and Fig. 2b, we can visualize directly the
difference between Ψ(xp,xc) and ψ(xp). We also note that the gradient of the nested solution
trajectory in Fig. 2a is always orthogonal to the K-axis since it is the optimal gain value for a given
b.

The coupling between the plant and control design variables is also present, noting the “tilt”
of the level sets. Therefore, a sequential method would not be guaranteed to arrive at the global
optima (but an iterative sequential strategy would in TP1) [6]. In TP1, from all starting conditions,

2The MATLAB codes for these test problems is available in Ref. [46].
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both the simultaneous and nested solution strategies arrive at the global optimum. Although this is
an extremely simple co-design problem, it does help visualize a number of important concepts.

5.2 Test Problem 2: Co-Design Transfer
Consider the following simple co-design problem that seeks to move a second-order system from
an arbitrary initial state to rest while minimizing control effort:

min
k,u(t)

∫ t f

0
u2dt (31a)

subject to: ξ̇ =

[
0 1
−k 0

]
ξ +

[
0
1

]
u (31b)

φ1 := ξ1(0) − x0 = 0, φ2 := ξ2(0) − v0 = 0 (31c)
φ3 := ξ1(t f ) = 0, φ4 := ξ2(t f ) = 0 (31d)

where k ∈ xp and u(t) ∈ xc. The solution for u∗(t, k) (i.e., the nested strategy) can be obtained by
scaling the problem [47] into an equivalent DO problem in Ref. [34, pp. 166–167]:

u∗(t, k) = −
2k

kt2
f − sin2(

√
kt f )

(
c1(t, k)x0 + c2(t, k)

v0
√

k

)
(32a)

c1(t, k) = sin
(√

k(t f − t)
)

sin
(√

kt f

)
−
√

kt f sin
(√

kt
)

(32b)

c2(t, k) = − cos
(√

k(t f − t)
)

sin
(√

kt f

)
+
√

kt f cos
(√

kt
)

(32c)

If k = 0, then the solution above is not valid and u∗ is linear with respect to t. The original
objective function can now be computed analytically by integrating the square of Eqn. (32). With
this closed-form expression for the objective function, an optimality condition for k can be derived
using Eqn. (20).

The results for this TP are shown in Fig. 3 for various values of the problem parameters. In
Fig. 3a, there are a large number of local solutions of ψ(k) and a clear global minimum at k∗ =

3.554. In Fig. 3b, for the different values of the problem parameters, there is a single global
minimum at k∗ = 6.924. Finally in Fig. 3c, there is a global minimum with k∗ = 0, i.e., the plant
solution is degenerate.

From these results, it is clear that caution should be used when claiming that a globally-optimal
co-design solution is found. More accurately expressed, global search algorithms could improve
the confidence of finding the true optimal solution such as a multistart approach or genetic algo-
rithms (as well as handling the feasibility issues discussed in Sec. 2.3.4) [35].

The control solution in Eqn. (32) demonstrates the complicated nature of the analytical solu-
tions for even the simplest of co-design problems. Furthermore, this test problem demonstrates that
the optimal solutions are sensitive to the problem parameters. The optimal value of k is different
in all three cases, but a single value for k would need to be selected (as it is a plant variable) if the
system needs to operate at each of considered scenarios. This problem may be a particularly useful
TP as it is a well-posed co-design problem with a single system-level objective, general boundary
conditions, and a closed-form OLC solution.
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(a)

(b)

(c)

FIGURE 3: Co-design transfer problem (TP2) results for various values of the problem parameters
and different values of k marked: (a) results demonstrating a large number of local solutions with
t f = 2, x0 = 0, and v0 = −1; (b) results demonstrating single global minimum with t f = 1, x0 = 1,
and v0 = 2; (c) results demonstrating degenerate plant solution with t f = 2, x0 = 5, and v0 = −5.
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(a) (b) (c)

FIGURE 4: Simple SASA test problem (TP3) results with J = 1, t f = 2, and umax = 1: (a) k = 0;
(b) k∗ = 0.8543; (c) k = 50.

5.3 Test Problem 3: Simple SASA
The final TP is a co-design problem that was used directly in a detailed co-design study. The co-
design study focused on developing a novel strain-actuated solar array (SASA) system for space-
craft pointing control and jitter reduction [22] (please see Ref. [47] for a detailed discussion of the
connections to the original study). Both the geometric properties of the solar array and OLC volt-
ages along the array were the design variables. To help provide some insight into the results of the
original design study, a much simpler, but still representative, co-design problem was proposed:

min
k,u(t)

− ξ1(t f ) (33a)

subject to: ξ̇ =

[
0 1
−k/J 0

]
ξ +

[
0

1/J

]
u (33b)

φ1 := ξ1(0) = 0, φ2 := ξ2(0) = 0 (33c)
φ3 := ξ2(t f ) = 0 (33d)
C1 := u − umax ≤ 0, C2 := − u − umax ≤ 0 (33e)

where k ∈ xp and u(t) ∈ xc. The results for this problem are shown in Fig. 4 for various values of
k including k∗ = 0.8543.

The OLC exhibits bang-bang behavior [29, 34], i.e., u is at either the minimum or maximum
value. Using the control stationarity condition in Eqn. (14b), we can show directly that the Hamil-
tonian is minimized if u exhibits bang-bang behavior, but determining the locations of the switch-
ing is quite challenging. In a nested strategy, the number and location of the switches vary for
different values of k (see Fig. 4c containing five switches while the optimal co-design solution
only contains one switch in Fig. 4b). This is a direct example of the discussion in Sec. 4.1 moti-
vating the using of DT in co-design (see Sec. 4.1.1). The nested co-design solutions were found
using DT [11, 23, 24].

We will also use this TP to compare the computational expense associated with using various
co-design solution strategies. If the nested strategy is used, the obligatory inner-loop problem is
an LQDO problem (cf. Problem (26)). Therefore, extremely efficient means for solving the inner-
loop are available [42]. Accordingly, we can test three strategies: simultaneous, nested, and nested
solving the inner-loop problem with a QP. A naive NLP DT implementation, mostly default opti-
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TABLE 1: Simple SASA test problem (TP3) computational results for various strategies (all times
are in seconds).

accuracy method k∗ θ∗(t f ) Ts/n Ns/n T̄s/n T̄o N̄i T̄i

closed-form 0.8543 1.2031 – – – – – –

low
(nt = 10)

simultaneous 0.8407 1.1808 0.06 29 0.002 – – –
nested 0.8497 1.1797 4.18 16 0.261 0.002 4.81 0.054

nested (QP) 0.8407 1.1808 0.16 15 0.011 0.002 4.67 0.002

medium
(nt = 100)

simultaneous 0.8690 1.2029 6.54 173 0.038 – – –
nested 0.8682 1.2029 257.95 8 32.244 0.004 6.00 5.373

nested (QP) 0.8691 1.2029 1.22 13 0.094 0.004 7.23 0.012
high

(nt = 1, 000)
simultaneous 0.8543 1.2028 11464.33 1342 8.543 – – –

nested (QP) 0.8535 1.2031 17.63 17 1.037 0.009 7.29 0.141

mization algorithm tolerances, and zero-valued initial guesses were used3. The results are shown
in Table 1 using the notation from Sec. 4.3.1. We note that these results are not indicative of the
most efficient implementations, but are meant to serve as illustrative results that highlight some
of the potential differences that may be observed when using the different strategies, especially
when an efficient inner-loop solution strategy exists. These results will vary from problem to prob-
lem and for different implementations of the solution strategies; therefore, similar tests should be
performed unless existing implementation knowledge for a similar class of problems is available.

As expected, the naive nested strategy was always many orders of magnitude slower than the
nested (QP) strategy. For the low accuracy approximation of the original DO problem using DT,
we see that the simultaneous strategy is faster than the nested (QP) strategy, although both total
solve times are quite small. For the medium and high accuracy cases, the nested (QP) approach was
significantly better than the simultaneous strategy. In all the cases, the simultaneous and nested
(QP) strategies converged to similar solutions, demonstrating equivalence of these two strategies
since none of the issues discussed in Sec. 2.2 are present. Therefore, the primary result is under
these testing conditions, the nested (QP) strategy facilitates faster, more accurate solutions to the
co-design problem, but only because of efficient methods for solving the inner loop.

TP3 is an attractive TP as the closed-form solution for the simultaneous strategy can be com-
puted to a high degree of accuracy, and it exhibits challenging behavior associated with inequality
path constraints.

6 Conclusion

In this article, general combined plant and controller design (or co-design) problems were exam-
ined. A large portion of existing co-design theory has focused on specific DO formulations, leaving
many open questions for co-design studies that do not fit the previous definitions.

There are two basic co-design solution strategies: simultaneous and nested. The problem for-
mulations for both strategies were presented and a discussion of the formulation elements was
provided. The nested strategy was presented as two-level optimization problem including a char-
acterization of the differences in the feasibility region between the two strategies. This motivated

3Full details of these tests can be seen in Ref. [46].
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the outer-loop feasibility constraint as one approach for ensuring that for every candidate plant
design, the control subproblem is well-posed.

The natural next step was the presentation of the optimality conditions for both methods. For
the simultaneous strategy, the optimality conditions were derived using only Pontryagin’s mini-
mum principle and an augmented state vector. Due to a number of challenges associated with the
optimality conditions, practical solution considerations were discussed with a focus on the moti-
vating reasons for using DT in co-design (e.g., the activity of inequality path constraints). Finally,
three test problems were presented. These problems were fairly simple but highlighted a number
of key concepts including coupling, the difference between the feasible regions for each strategy,
general boundary conditions, inequality path constraints, system-level objectives, and complexity
of the closed-form solutions.

This work seeks to provide a foundation for additional advances in general co-design theory.
The outer-loop feasibility constraint warrants further investigation. Better comparisons between
the two strategies are needed, especially for co-design problems without a specific form of the
inner loop. Developing methods for reducing total computational expense is also an important
area such as the suggestion in Ref. [44] for treating plant variables like dummy states (or control)
or alternative general strategies such decentralized optimization [9, 48]. Furthermore, there is a
need to develop solution strategies that specifically address practical implementation challenges,
such as neuro-dynamic programming [43]. In addition, analyzing the implications of uncertainty in
various problem elements (with respect to both the plant and control [49, 50]) is also an important
topic to investigate further, and advancements in this area would increase practical utility in the
solution of many relevant co-design problems. Finally, development of test problems that are more
realistic could help answer some of the remaining open questions.
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