Enhancements to the Perfect Matching-based Tree Algorithm for Generating Architectures

Daniel R. Herber∗, James T. Allison†
Engineering System Design Lab
University of Illinois at Urbana-Champaign
April 13, 2017

Abstract

In this report, a number of enhancements to the perfect matching-based tree algorithm for generating the set of unique, feasible architectures are discussed. The original algorithm was developed to generate a set of colored graphs covering the graph structure space defined by (C, R, P) and various additional network structure constraints. The proposed enhancements either more efficiently cover the same graph structure space or allow additional network structure constraints to be defined. The six enhancements in this report are replicate ordering, avoiding loops, avoiding multi-edges, avoiding line-connectivity constraints, checking for saturated subgraphs, and enumerating subcatalogs. Some theory, implementation details, and examples are provided for each enhancement.

preprint-v1

∗Ph.D candidate in Systems and Entrepreneurial Engineering, Department of Industrial and Enterprise Systems Engineering, University of Illinois at Urbana-Champaign, herber1@illinois.edu
†Assistant Professor, Department of Industrial and Enterprise Systems Engineering, University of Illinois at Urbana-Champaign, jtalliso@illinois.edu
©2017 Daniel R. Herber
Contents

1 Overview
2 Replicate Ordering
 2.1 Theory
 2.2 Implementation
 2.3 Examples
3 Avoiding Loops
 3.1 Theory
 3.2 Implementation
 3.3 Examples
4 Avoiding Multi-Edges
 4.1 Theory
 4.2 Implementation
 4.3 Example
5 Avoiding Line-Connectivity Constraints
 5.1 Theory
 5.2 Implementation
 5.3 Examples
6 Checking for Saturated Subgraphs
 6.1 Theory
 6.2 Implementation
 6.3 Examples
7 Enumerating Subcatalogs
 7.1 Theory
 7.2 Implementation
 7.3 Examples

References
A Project Code
B Case Studies from Ref. [1]
List of Figures

1. Example 1 for Algorithm 2 (replicate ordering) ... 7
2. Example 2 for Algorithm 2 (replicate ordering) ... 8
3. Illustration of a line-connectivity constraint .. 13
4. Example 1 for Algorithm 5 (line-connectivity constraints) 14
5. Example 2 for Algorithm 5 (line-connectivity constraints) 16
6. Example 1 for Algorithm 6 (saturated subgraphs) ... 19
7. Example 2 for Algorithm 6 (saturated subgraphs) ... 20
8. Comparison (Case Study 1) .. 26
9. Comparison (Case Study 2) .. 26
10. Comparison (Case Study 3) .. 27

List of Tables

1. Select acronyms/abbreviations ... 5
2. Comparison (replicate ordering, Example 1) ... 7
3. Comparison (replicate ordering, Example 2) ... 8
4. Comparison (loops, Example 1) ... 10
5. Comparison (loops, Example 2) .. 10
6. Comparison (multi-edge) ... 12
7. Comparison (line-constraints, Example 1) ... 15
8. Comparison (line-constraints, Example 2) ... 15
9. Comparison (saturated subgraphs, Example 1) ... 19
10. Comparison (saturated subgraphs, Example 2) ... 19
11. Subcatalogs for Example 1 .. 23
12. Comparison (enumerating subcatalogs, Example 1) 24
13. Select subcatalogs for Example 2 .. 24
14. Comparison (enumerating subcatalogs, Example 2) 24
15. Changes in the codes to support the enhancements 25

List of Algorithms

1. Original tree search algorithm ... 4
2. Limit potential connections based on replicate ordering 6
3. Limit potential connections based on loops .. 9
4. Limit potential connections based on multiedges ... 11
5. Limit potential connections based on line-connectivity constraints 13
6. Handle saturated subgraphs .. 18
7. Generate set of unique, feasible graphs using subcatalogs 22
1 Overview

In Ref. [1], a tree search algorithm was developed to generate a set of colored graphs covering the graph structure space defined by \((C, R, P)\) and various additional network structure constraints. This algorithm is shown in Alg. 1 with some minor changes to the variable names. Please refer to the original reference for additional theory and notation details. In this report, a number of enhancements are proposed to either more efficiently cover the same graph structure space or allow additional network structure constraints to be defined.

Algorithm 1: Original tree search algorithm.

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>:M – set of graphs, initially empty</td>
<td>:M – set of graphs</td>
</tr>
<tr>
<td>:V – vector of remaining ports for each component replicate</td>
<td></td>
</tr>
<tr>
<td>:E – vector of edges in sequential pairs, initially empty</td>
<td></td>
</tr>
<tr>
<td>cVf – cumulative sum of the original V plus 1</td>
<td></td>
</tr>
<tr>
<td>A – expanded potential adjacency matrix</td>
<td></td>
</tr>
</tbody>
</table>

1. il ← find(V, first) /* find first nonzero entry */
2. L ← cVf(il) – V(il) /* left port */
3. V(il) ← V(il) – 1 /* remove port */
4. Vallow ← V ◦ A(il, :)
5. I ← find(Vallow) /* find nonzero entries */
6. for iR ← I do /* loop through all nonzero entries */
7. R ← cVf(iR) – V(iR) /* right port */
8. E2 ← [E, L, R] /* combine left, right ports for an edge */
9. V2 ← V /* local remaining ports vector */
10. V2(iR) ← V2(iR) – 1 /* remove port (local copy) */
11. A2 ← A /* local expanded potential adjacency matrix */
12. if any element of V2 is nonzero then
13. M ← Algorithm 1 (tree) with M, V2, E2, cVf, A2 /* recursive call */
14. else
15. M{end + 1} ← E2 /* missorted perfect matching */
16. end
17. end

Each one of the enhancements will be discussed in the following format. First, the theory behind the enhancement will be presented with a focus on showing the desired graph structure space is still covered. Second, the implementation of the enhancement will be discussed with pseudocode. Finally, some examples are provided comparing the original algorithm to the enhancement. Both visualizations or other aides and computational tests are provided\(^1\).

There are six enhancements proposed in this report: replicate ordering, avoiding loops, avoiding multi-edges, avoiding line-connectivity constraints, checking for saturated subgraphs, and enumerating subcatalogs. The final section discusses the effect of the enhancements on the case studies in Ref. [1].

\(^1\) A tests were performed on a personal computer with an i7-6800K at 4.0 GHz (up to 12 threads available), 32 GB DDR4 3200 RAM, windows 10 64-bit, and MATLAB 2017a.
Table 1: Select acronyms/abbreviations.

<table>
<thead>
<tr>
<th>Short Form</th>
<th>Long Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>En</td>
<td>Enhancement</td>
</tr>
<tr>
<td>Orig</td>
<td>Original Algorithm (see Alg. 1)</td>
</tr>
<tr>
<td>NSC</td>
<td>Network Structure Constraint (see Ref.[1])</td>
</tr>
<tr>
<td>12T</td>
<td>12 Threads</td>
</tr>
</tbody>
</table>
2 Replicate Ordering

This enhancement is based on replicate ordering and is similar to the port-ordering modification that the original tree algorithm is based on [1]. Now, we eliminate some component-type isomorphisms during the graph generation process.

2.1 Theory

Consider a single component type and its set of \(N \) replicates. Now, consider a single replicate numbered \(n \) and \(n \neq 1 \). During an iteration of the tree algorithm (Alg. 1), a single edge is added. If replicate \(n - 1 \) still has no ports connected, then adding this edge to \(n \) will produce a graph isomorphic to the graph created when adding the edge to \(n - 1 \). This claim is based on the component-type isomorphism issue where we have two identical replicates currently with no edges. Therefore, we only need to allow a connection to \(n - 1 \) and not to \(n \), and the tree algorithm will continue generating the desired graph structure space. When \(n = 1 \), an edge will always be allowed since there is no other replicate to compare against.

This enhancement is general since it does not rely on any NSCs being present.

2.2 Implementation

Algorithm 2: Limit potential connections based on replicate ordering.

| Input | V – vector of remaining ports for each component replicate
| | Vf – initial vector of ports available for each component replicate
| | iInitRep – indices of the initial replicate for each component type
| Output: Vordering – binary vector where 1 indicates an edge is possible, 0 if it is not |

1. \(\text{Vordering} \leftarrow \text{circshift}(V,[1]) \neq \text{Vf} \quad /* \text{check if left neighbor has been connected to something} */
2. \(\text{Vordering(iInitRep)} \leftarrow 1 \quad /* \text{initial replicates are always 1} */

Algorithm 2 is the pseudocode for the implementation of this enhancement. The implementation is centered around the creation of a binary vector (Vordering) with length equal to the total number of components where unity indicates a connection is allowed and zero indicates it is not. This enhancement is implemented efficiently with the \text{circshift}(v,k) function. This function circularly shifts the elements in array \(v \) by \(k \) positions [2]. Based on the discussion above, we want to determine if \(n - 1 \) has been connected to any other vertex. Using the initial vector of ports available for each component replicate (Vf), we \text{circshift} the vector of remaining ports for each component replicate (V) by one position to the right and compare these vectors (see line 1). A pair that is not equal indicates \(n - 1 \) has at least one edge, so we now need to allow connections to \(n \).

The procedure above will produce incorrect results for the initial replicates. However, we have that these initial replicates should never have their connection disallowed so we simply ensure that their index in Vordering is always unity (see line 2). The indices of the initial replicate for each component type (iInitRep) is calculated before the tree algorithm is called since it does not change throughout the graph generation procedure.

This enhancement is inserted between lines 3 and 4 of Alg. 1 and line 4 is changed to:

\[
\text{Vallow} = V \circ A(i_{L,:}) \circ \text{Vordering}
\]
Now, Vordering can disallow connections in the same way as A(iL,:).

2.3 Examples

2.3.1 Example 1

The base three-tuple and NSCs for this example are specified as:

\[
C = \{X\}, \quad R = [4], \quad P = [2], \quad \text{no additional NSCs}
\]

(2)

The second and third inputs for Algorithm 2 are:

\[
Vf = [2 2 2 2], \quad \text{initRep} = [1]
\]

(3)

We will consider two different V, one at the initial iteration of the tree algorithm and one at some intermediate iteration. Figure 1a goes through the operations in Algorithm 2 for the different V. The example iterations are also visualized in Figs. 1b and 1c.

Table 2 compares the original algorithm with the enhancement for this example. There is a reduction in candidate graphs generated while the number of unique graphs remains the same.

<table>
<thead>
<tr>
<th></th>
<th>Initial</th>
<th>Intermediate</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V)</td>
<td>[1 2 2 2]</td>
<td>[0 0 1 2]</td>
</tr>
<tr>
<td>(\text{circshift}(V[0 1]))</td>
<td>[2 1 2 2]</td>
<td>[2 0 0 1]</td>
</tr>
<tr>
<td>(Vf)</td>
<td>[2 2 2 2]</td>
<td>[2 2 2 2]</td>
</tr>
<tr>
<td>(\text{circshift}(V[0 1]) \neq Vf)</td>
<td>[0 1 0 0]</td>
<td>[0 1 1 1]</td>
</tr>
<tr>
<td>Vordering(\text{initRep}) ← 1</td>
<td>[1 1 0 0]</td>
<td>[1 1 1 1]</td>
</tr>
<tr>
<td>Removed/total branches</td>
<td>2/4</td>
<td>0/2</td>
</tr>
</tbody>
</table>

(a) Algorithm operations.

(b) Initial iteration.

(c) Intermediate iteration.

Figure 1: Example 1 for Algorithm 2 (replicate ordering).

Table 2: Comparison (replicate ordering, Example 1).

<table>
<thead>
<tr>
<th></th>
<th>Orig</th>
<th>En</th>
<th>Orig/En</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidate Graphs</td>
<td>26</td>
<td>8</td>
<td>3.25</td>
</tr>
<tr>
<td>Unique Graphs</td>
<td>5</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Generation Time (s)</td>
<td>0.0052</td>
<td>0.0033</td>
<td>1.58</td>
</tr>
<tr>
<td>Total Time (s)</td>
<td>0.0095</td>
<td>0.0060</td>
<td>1.58</td>
</tr>
</tbody>
</table>
2.3.2 Example 2

The base three-tuple and NSCs for this example are specified as:

\[C = \{W, X, Y, Z\}, \quad R = [3 \ 4 \ 2 \ 1], \quad P = [1 \ 2 \ 2 \ 3], \quad \text{no additional NSCs} \quad (4) \]

The second and third inputs for Algorithm 2 are:

\[Vf = [1 \ 1 \ 1 \ 2 \ 2 \ 2 \ 2 \ 3], \quad i\text{InitRep} = [1 \ 4 \ 8 \ 10] \quad (5) \]

We will consider two different \(V \), one at the initial iteration of the tree algorithm and one at some intermediate iteration. Figure 2a goes through the operations in Algorithm 2 for the different \(V \). The example iterations are also visualized in Figs. 2b and 2c.

Table 3 compares the original algorithm with the enhancement for this example. There is a reduction in candidate graphs generated while the number of unique graphs remains the same.

<table>
<thead>
<tr>
<th></th>
<th>Initial</th>
<th>Intermediate</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V)</td>
<td>([0 \ 1 \ 1 \ 2 \ 2 \ 2 \ 2 \ 2 \ 3])</td>
<td>([0 \ 0 \ 0 \ 1 \ 2 \ 2 \ 1 \ 2 \ 3])</td>
</tr>
<tr>
<td>(\text{circshift}(V[0 \ 1]))</td>
<td>([3 \ 0 \ 1 \ 1 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 3])</td>
<td>([3 \ 0 \ 0 \ 0 \ 1 \ 2 \ 2 \ 1 \ 2 \ 2 \ 2 \ 3])</td>
</tr>
<tr>
<td>(Vf)</td>
<td>([1 \ 1 \ 1 \ 2 \ 2 \ 2 \ 2 \ 2 \ 3])</td>
<td>([1 \ 1 \ 1 \ 2 \ 2 \ 2 \ 2 \ 2 \ 3])</td>
</tr>
<tr>
<td>(\text{circshift}(V[0 \ 1]) \neq Vf)</td>
<td>([1 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 1])</td>
<td>([1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1])</td>
</tr>
<tr>
<td>(\text{Vordering}(i\text{InitRep}) \leftarrow 1)</td>
<td>([1 \ 1 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1])</td>
<td>([1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 0 \ 1 \ 1 \ 1])</td>
</tr>
<tr>
<td>Removed/total branches</td>
<td>5/9</td>
<td>1/6</td>
</tr>
</tbody>
</table>

(a) Algorithm operations.

(b) Initial iteration.
(c) Intermediate iteration.

Figure 2: Example 2 for Algorithm 2 (replicate ordering).

Table 3: Comparison (replicate ordering, Example 2).

<table>
<thead>
<tr>
<th></th>
<th>Orig</th>
<th>En</th>
<th>Orig/En</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidate Graphs</td>
<td>456766</td>
<td>14359</td>
<td>31.8</td>
</tr>
<tr>
<td>Unique Graphs</td>
<td>1657</td>
<td>1657</td>
<td>1</td>
</tr>
<tr>
<td>Generation Time (s)</td>
<td>16.26</td>
<td>0.69</td>
<td>23.6</td>
</tr>
<tr>
<td>Total Time (s)</td>
<td>3577</td>
<td>145</td>
<td>24.7</td>
</tr>
</tbody>
</table>
3 Avoiding Loops

Under specific NSCs, we can exclude loops during the graph generation process. A loop is an edge that connects a vertex to itself [3, p. 25].

3.1 Theory

Consider a component type that is both mandatory (S_3), and each edge is required to be unique (S_6). Then a feasible graph cannot have any loops for this component type since the number of edges would not be unique. We cannot make the same assumption if a component type needs to have each edge be unique but is not a mandatory component. Consider a two-port, nonmandatory component type with one replicate. Now, if we want a connected graph with all components except this specific two-port component, then a loop is required since each port must be filled.

This is not a general enhancement since it requires specific NSCs.

3.2 Implementation

Algorithm 3: Limit potential connections based on loops.

<table>
<thead>
<tr>
<th>Input</th>
<th>A – expanded potential adjacency matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M – vector indicating if a component replicate is mandatory</td>
</tr>
<tr>
<td>Output</td>
<td>A – expanded potential adjacency matrix</td>
</tr>
</tbody>
</table>

1. If a unique number of edges are required then
2. $N \leftarrow \text{length}(M)$ /* total number of component replicates */
3. $\text{iDiag} \leftarrow [1 : N + 1 : N^2]$ /* indices for the diagonal elements */
4. $A(\text{iDiag}) \leftarrow \neg M$ /* assign negated mandatory vector to the diagonal */
5. end

Algorithm 3 is the pseudocode for the implementation of this enhancement. The implementation is centered around modifying the expanded potential adjacency matrix (A) before the graph generation algorithm is called. This enhancement is only called if a unique number of edges is required, S_6. The total number of components is found and then the linear index values for the diagonal of expanded potential adjacency matrix are computed. Finally in line 4, the negated vector indicating if a component replicate is mandatory, $\neg M$, is assigned to the diagonal of A.

3.3 Examples

3.3.1 Example 1

The base three-tuple and NSCs for this example are specified as:

$$C = \{X, Y\}, \quad R = [2 \ 2], \quad P = [2 \ 2], \quad S_3 \text{ with } M = [0 \ 1], \quad S_6$$

We will consider an all unity A but this could be any expanded potential adjacency matrix. The second input to Alg. 3 is:

$$M = [0 \ 0 \ 1 \ 1], \quad \neg M = [1 \ 1 \ 0 \ 0]$$
Now, Alg. 3 modifies the expanded potential adjacency matrix as:

\[
A = \begin{pmatrix}
X & X & Y & Y \\
X & 1 & 1 & 1 & 1 \\
X & 1 & 1 & 1 & 1 \\
Y & 1 & 1 & 1 & 1 \\
Y & 1 & 1 & 1 & 1 \\
\end{pmatrix} \xrightarrow{A(\text{Diag}) \leftarrow !M} \begin{pmatrix}
X & X & Y & Y \\
X & 1 & 1 & 1 & 1 \\
Y & 1 & 1 & 0 & 1 \\
Y & 1 & 1 & 1 & 0
\end{pmatrix}
\]

\[8\]

\(Y\) is mandatory so corresponding diagonal entries in \(A\) were zeroed.

Table 4 compares the original algorithm with the enhancement for this example. There is a reduction in candidate graphs generated while the number of unique graphs remains the same.

Table 4: Comparison (loops, Example 1).

<table>
<thead>
<tr>
<th></th>
<th>Orig</th>
<th>En</th>
<th>Orig/En</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidate Graphs</td>
<td>26</td>
<td>16</td>
<td>1.63</td>
</tr>
<tr>
<td>Unique Graphs</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Generation Time (s)</td>
<td>0.0024</td>
<td>0.0022</td>
<td>1.09</td>
</tr>
<tr>
<td>Total Time (s)</td>
<td>0.0086</td>
<td>0.0070</td>
<td>1.23</td>
</tr>
</tbody>
</table>

3.3.2 Example 2

The base three-tuple and NSCs for this example are specified as:

\[
C = \{X, Y\}, \quad R = [2 \ 2], \quad P = [2 \ 2], \quad S_3 \text{ with } M = [1 \ 1], \quad S_6
\]

We will consider an all unity \(A\) but this could be any expanded potential adjacency matrix. The second input to Alg. 3 is:

\[
M = [1 \ 1 \ 1 \ 1], \quad !M = [0 \ 0 \ 0 \ 0]
\]

Now, Alg. 3 modifies the expanded potential adjacency matrix as:

\[
A = \begin{pmatrix}
X & X & Y & Y \\
X & 1 & 1 & 1 & 1 \\
X & 1 & 1 & 1 & 1 \\
Y & 1 & 1 & 1 & 1 \\
Y & 1 & 1 & 1 & 1 \\
\end{pmatrix} \xrightarrow{A(\text{Diag}) \leftarrow !M} \begin{pmatrix}
X & X & Y & Y \\
X & 0 & 1 & 1 & 1 \\
X & 1 & 0 & 1 & 1 \\
Y & 1 & 1 & 0 & 1 \\
Y & 1 & 1 & 1 & 0 \\
\end{pmatrix}
\]

\[11\]

Since both component types are mandatory, the entire diagonal is zeroed.

Table 5 compares the original algorithm with the enhancement for this example. There is a reduction in candidate graphs generated while the number of unique graphs remains the same.

Table 5: Comparison (loops, Example 2).

<table>
<thead>
<tr>
<th></th>
<th>Orig</th>
<th>En</th>
<th>Orig/En</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidate Graphs</td>
<td>26</td>
<td>11</td>
<td>2.36</td>
</tr>
<tr>
<td>Unique Graphs</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Generation Time (s)</td>
<td>0.0024</td>
<td>0.0022</td>
<td>1.09</td>
</tr>
<tr>
<td>Total Time (s)</td>
<td>0.0086</td>
<td>0.0060</td>
<td>1.43</td>
</tr>
</tbody>
</table>
4 Avoiding Multi-Edges

Under specific NSCs, we can exclude multi-edges during the graph generation process. A multi-edge is two or more edges that are incident to the same two vertices [3, p. 25].

4.1 Theory

Consider when each edge is required to be unique (S_6). Due to the sequential nature of the tree algorithm, a single edge must be added between two components before a second edge is added; thus, creating a multi-edge. Therefore, when the first edge is added between two components, we can utilize the expanded potential adjacency matrix to disallow any further connections between the components. Since a feasible graph would not have any multi-edges when each edge is required to be unique, the tree algorithm with this enhancement will continue generating the desired graph structure space.

This enhancement should not be applied on loops since loops are occasionally needed to remove components (see Sec. 3 for the handling of loops). Also, this is not a general enhancement since it requires specific NSCs.

4.2 Implementation

Algorithm 4: Limit potential connections based on multiedges.

<table>
<thead>
<tr>
<th>Algorithm 4: Limit potential connections based on multiedges.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Output</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

Algorithm 4 is the pseudocode for the implementation of this enhancement. The implementation is centered around modifying the expanded potential adjacency matrix (A) when a new edge is created. This enhancement is only called if a unique number of edges is required, S_6. Additionally, this enhancement is only called if the edge is not a loop (see Sec. 3 for the handling of loops). If both of these conditions are met, then the corresponding entries in the expanded potential adjacency matrix are zeroed in lines 3 and 4.

This enhancement is inserted between lines 11 and 12 of Alg. 1 using the local copy A_2.

4.3 Example

The base three-tuple and NSCs for this example are specified as:

$$C = \{W, X, Y, Z\}, \quad R = [1 \ 1 \ 1], \quad P = [3 \ 3 \ 3 \ 3], \quad S_6$$ (12)
Consider one path during the graph generation process when the reduced potential adjacency matrix is initially all ones:

\[
\begin{pmatrix}
W & X & Y & Z \\
1 & 1 & 1 & 1 \\
X & 1 & 1 & 1 & 1 \\
Y & 1 & 1 & 1 & 1 \\
Z & 1 & 1 & 1 & 1
\end{pmatrix}
\]

Iter. 0, \(V = [3 \ 3 \ 3 \ 3] \)

\[
\begin{pmatrix}
W & X & Y & Z \\
1 & 0 & 0 & 0 \\
X & 0 & 1 & 1 & 1 \\
Y & 0 & 1 & 1 & 1 \\
Z & 0 & 1 & 1 & 1
\end{pmatrix}
\]

Iter. 1, \(V = [\bar{2} \ 2 \ 3 \ 3] \)

\[
\begin{pmatrix}
W & X & Y & Z \\
1 & 0 & 0 & 0 \\
X & 0 & 1 & 0 & 1 \\
Y & 0 & 0 & 1 & 1 \\
Z & 0 & 0 & 1 & 1
\end{pmatrix}
\]

Iter. 2, \(V = [\bar{1} \ 2 \ 2 \ 3] \)

\[
\begin{pmatrix}
W & X & Y & Z \\
1 & 0 & 0 & 0 \\
X & 0 & 1 & 0 & 0 \\
Y & 0 & 0 & 1 & 0 \\
Z & 0 & 0 & 1 & 0
\end{pmatrix}
\]

Iter. 3, \(V = [0 \ 2 \ 2 \ 2] \)

\[
\begin{pmatrix}
W & X & Y & Z \\
1 & 0 & 0 & 0 \\
X & 0 & 1 & 1 & 1 \\
Y & 0 & 1 & 1 & 1 \\
Z & 0 & 1 & 1 & 1
\end{pmatrix}
\]

Iter. 4, \(V = [0 \ \bar{1} \ \bar{1} \ \bar{2}] \)

where the matrix above represents \(A \), \(\Box \) indicates this component was selected for an edge, and \(\Box \) indicates the connection was disallowed. Each iteration added a pair of zeros to the potential adjacency matrix.

Table 6 compares the original algorithm with the enhancement for this example. There is a reduction in candidate graphs generated while the number of unique graphs remains the same.

<table>
<thead>
<tr>
<th></th>
<th>Orig</th>
<th>En</th>
<th>Orig/En</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidate Graphs</td>
<td>211</td>
<td>46</td>
<td>4.59</td>
</tr>
<tr>
<td>Unique Graphs</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Generation Time (s)</td>
<td>0.0086</td>
<td>0.0037</td>
<td>2.32</td>
</tr>
<tr>
<td>Total Time (s)</td>
<td>0.015</td>
<td>0.0070</td>
<td>2.14</td>
</tr>
</tbody>
</table>
5 Avoiding Line-Connectivity Constraints

On line 4 of Alg. 1, we utilize the expanded potential adjacency matrix (A) to disallow connections between components. This is also phrased as every graph must have edges between vertices that are feasible. These are termed vertex-connectivity constraints, denoted S_7. A similar type of NSC can be included between the lines of the graph, termed line-connectivity constraints.

5.1 Theory

The line graph of a graph G is the graph $L(G)$ with the edges of G as its vertices, and where two edges of G are adjacent in $L(G)$ if and only if they are incident in G [4, p. 10]. Consider the graph in Fig. 3a and its corresponding line graph in Fig. 3b with three component types. If component type 1 is connected to component type 2, we can specify if a connection between component types 2 and 3 is allowed. This is equivalent to specifying if line type $(1, 2)$ can be connected to line type $(2, 3)$.

This enhancement is a new type of NSC and is designated S_8.

![Figure 3: Illustration of a line-connectivity constraint.](image)

5.2 Implementation

Since this enhancement is a new type of NSC, it is specified before the graph generation procedure. For each line-connectivity constraint, a triple of integers is supplied defining the component types in Fig. 3a. They are supplied in increasing order, i.e., $[#1, #2, #3]$. Therefore, each triple is interpreted as: if #1 and #2 are connected, don’t ever connect #2 to #3. These triples help construct the reduced 3-D array with line-connectivity constraint information, B. They are indexed in reverse order to facilitate extracting column vectors, i.e., $B(#3, #2, #1) = 0$. Given a set of triples, a function creates the expanded $N \times N \times N$ matrix where N is the total number of component replicates where a zero indicates a connection is not allowed and one indicates it is allowed.

Algorithm 5: Limit potential connections based on line-connectivity constraints.

```plaintext
Input: A – expanded potential adjacency matrix
iR – component index for right port
iL – component index for left port
B – 3-D array with line-connectivity constraint information

Output: A – expanded potential adjacency matrix

1 if there are any line-connectivity constraints then
2   A(:, iR) ← A(:, iR) ⊙ B(:, iR, iL) /* potentially limit connections */
3   A(:, iL) ← A(:, iL) ⊙ B(:, iL, iR) /* potentially limit connections */
4   A([iR, iL], :) ← A(:, [iR, iL])T /* make symmetric */
5 end
```

Algorithm 5 is the pseudocode for the implementation of this enhancement. This enhancement is only called if there are any line-connectivity constraints, S_8. First
using the component index of the right port, we extract a vector from the 3-D array with line-connectivity constraint information (B) when $#1 = i_L$ and $#2 = i_R$. This vector is multiplied element-wise with the correct row of the expanded potential adjacency matrix (A), potentially limiting connections. This step then performed again switching the roles of component indices, i.e., $#1 = i_R$ and $#2 = i_L$. Finally, the changes to A are applied to the symmetric location, ensuring A remains symmetric.

This enhancement is inserted between lines 11 and 12 of Alg. 1 using the local copy A^2.

5.3 Examples

5.3.1 Example 1

The base three-tuple and NSCs for this example are specified as:

$$C = \{X, Y, Z\}, \quad R = [1 \ 2 \ 2], \quad P = [2 \ 2 \ 2], \quad S_8(1) = [1, 2, 3]$$ \hspace{1cm} (13)

The reduced (B) and expanded (B) 3-D arrays with line-connectivity constraint information are:

$$B(:, :, 1) = \begin{bmatrix} X & Y & Z \\ X & 1 & 1 & 1 \\ Y & 1 & 1 & 1 \\ Z & 1 & 0 & 1 \end{bmatrix}, \quad B(:, :, 1) = \begin{bmatrix} X \ Y \ Y \ Z \ Z \\ X & Y & Y & Z & Z \\ X & 1 & 1 & 1 & 1 \\ Y & 1 & 1 & 1 & 1 \\ Y & 1 & 1 & 1 & 1 \\ Z & 1 & 0 & 0 & 1 \\ Z & 1 & 0 & 0 & 1 \end{bmatrix}$$ \hspace{1cm} (14)

Figure 4a goes through the operations in Algorithm 5 for a certain line type. The limiting of potential edges is visualized in Fig. 4b.

Table 7 compares the original algorithm with the enhancement for this example. There is a reduction in candidate graphs generated while the number of unique graphs remains the same.

<table>
<thead>
<tr>
<th>Line Type 1</th>
<th>$B(:, i_R, i_L)$</th>
<th>$B(:, i_L, i_R)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$[1 \ 1 \ 0 \ 0]^T$</td>
<td>$[1 \ 1 \ 1 \ 1]^T$</td>
</tr>
</tbody>
</table>

(a) Algorithm operations.
(b) Line Type 1.

Figure 4: Example 1 for Algorithm 5 (line-connectivity constraints).

5.3.2 Example 2

The base three-tuple and NSCs for this example are specified as:

$$C = \{X, Y, Z\}, \quad R = [2 \ 2 \ 3], \quad P = [2 \ 2 \ 2] \quad S_8(1) = [1, 2, 2], \quad S_8(2) = [2, 1, 2], \quad S_8(3) = [3, 3, 3]$$ \hspace{1cm} (15)
Table 7: Comparison (line-constraints, Example 1).

<table>
<thead>
<tr>
<th></th>
<th>Orig</th>
<th>En</th>
<th>Orig/En</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidate Graphs</td>
<td>146</td>
<td>98</td>
<td>1.49</td>
</tr>
<tr>
<td>Unique Graphs</td>
<td>26</td>
<td>26</td>
<td>1</td>
</tr>
<tr>
<td>Generation Time (s)</td>
<td>forthcoming</td>
<td>forthcoming</td>
<td></td>
</tr>
<tr>
<td>Total Time (s)</td>
<td>forthcoming</td>
<td>forthcoming</td>
<td></td>
</tr>
</tbody>
</table>

The reduced 3-D array with line-connectivity constraint information \((B)\) is:

\[
B(:,1) = \begin{bmatrix} X & Y & Z \\ X & 1 & 1 & 1 \\ Y & 1 & 0 & 1 \\ Z & 1 & 1 & 1 \end{bmatrix}, \quad B(:,2) = \begin{bmatrix} X & Y & Z \\ X & 1 & 1 & 1 \\ Y & 0 & 1 & 1 \\ Z & 1 & 1 & 1 \end{bmatrix}, \quad B(:,3) = \begin{bmatrix} X & Y & Z \\ X & 1 & 1 & 1 \\ Y & 1 & 1 & 1 \\ Z & 1 & 1 & 0 \end{bmatrix}
\]

(16)

The expanded 3-D arrays with line-connectivity constraint information \((B)\) for \(S_6(3)\) are:

\[
B(:,5) = B(:,6) = B(:,7) = \begin{bmatrix} X & X & Y & Y & Z & Z & Z \\ X & 1 & 1 & 1 & 1 & 1 & 1 \\ X & 1 & 1 & 1 & 1 & 1 & 1 \\ Y & 1 & 1 & 1 & 1 & 1 & 1 \\ Y & 1 & 1 & 1 & 1 & 1 & 1 \\ Z & 1 & 1 & 1 & 0 & 0 & 0 \\ Z & 1 & 1 & 1 & 0 & 0 & 0 \\ Z & 1 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}
\]

(17)

Figure 5a goes through the operations in Algorithm 5 for two line types. The limiting of potential edges is visualized in Figs. 5b and 5c.

Table 8 compares the original algorithm with the enhancement for this example. There is a reduction in candidate graphs generated while the number of unique graphs remains the same.

Table 8: Comparison (line-constraints, Example 2).

<table>
<thead>
<tr>
<th></th>
<th>Orig</th>
<th>En</th>
<th>Orig/En</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidate Graphs</td>
<td>8316</td>
<td>5120</td>
<td>1.62</td>
</tr>
<tr>
<td>Unique Graphs</td>
<td>119</td>
<td>119</td>
<td>1</td>
</tr>
<tr>
<td>Generation Time (s)</td>
<td>forthcoming</td>
<td>forthcoming</td>
<td></td>
</tr>
<tr>
<td>Total Time (s)</td>
<td>forthcoming</td>
<td>forthcoming</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Line Type 1</td>
<td>Line Type 2</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>iL</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>iR</td>
<td>3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>B(\cdot;iR,iL)</td>
<td>[1 1 0 0 1 1 1]\top</td>
<td>[1 1 1 1 0 0 0]\top</td>
<td></td>
</tr>
<tr>
<td>B(\cdot;iL,iR)</td>
<td>[1 1 0 0 1 1 1]\top</td>
<td>[1 1 1 1 0 0 0]\top</td>
<td></td>
</tr>
</tbody>
</table>

(a) Algorithm operations.

(b) Line Type 1.

(c) Line Type 2.

Figure 5: Example 2 for Algorithm 5 (line-connectivity constraints).
6 Checking for Saturated Subgraphs

This enhancement is based on the work in Ref. [5] for enumerating molecules. In their work, all atoms are mandatory in the graph. Therefore, the detection of a saturated subgraph before all atoms have been connected indicates the candidate graph will be infeasible and can be discarded.

6.1 Theory

A subgraph of a graph G is another graph formed from a subset of the vertices and edges of G [3, p. 3]. A saturated subgraph is a subgraph with no empty ports and may contain multiple connected subgraphs [5]. Since a saturated subgraph has no empty ports, no components other than the components currently in this subgraph will be connected to this subgraph during further iterations of the graph generation procedure. If we determine that the current iteration of the tree algorithm has created a saturated subgraph, then there are three scenarios to consider.

First, if all mandatory components are contained in the saturated subgraph, then no additional iterations are needed. Since all components not connected to a mandatory component will be removed, all components not currently in the saturated subgraph will be removed. Therefore, the topology of the remaining components is negligible. Since the topology is negligible, we can assign an arbitrary topology to the remaining components, save the graph, and terminate the iteration.

The second scenario is if none of the mandatory components are in the saturated subgraph. This provides no additional information so we allow the current iteration to continue. The final scenario is when some, but not all, mandatory components are in the saturated subgraph. Since at least one pair of mandatory components will not be connected, this graph will be infeasible. Therefore, we can terminate this iteration without saving the graph.

This is not a general enhancement since it requires specific NSCs, namely at least one mandatory component (S_3).

6.2 Implementation

Algorithm 6 is the pseudocode for the implementation of this enhancement. This enhancement is only called if there are some mandatory components (S_3). First, the unsaturated components are found by checking the vector of remaining ports for each component replicate, V. A component is saturated if all ports are filled. To determine if the current graph is a saturated subgraph, we compare the remaining ports of the unsaturated components to the original number of ports available (see line 3).

If the current graph is indeed a saturated subgraph, then we compute the number of mandatory components not in the saturated subgraph, $nUncon$. If all mandatory components are in the saturated subgraph, then this graph is feasible. We assign an arbitrary ordering to the remaining components, save the graph, and terminate the iteration (see lines 6 to 13). If no mandatory components are in the saturated subgraph, then we allow the current iteration to continue (see line 14). Finally, if some but not all mandatory components are in the saturated subgraph, we stop the iteration since the graph is infeasible (see lines 15 and 16).

This enhancement is inserted between lines 11 and 12 of Alg. 1 since the current edge needs to be added but before the recursion call. With this enhancement, the else statement on line 14 of Alg. 1 will never be reached if there are any mandatory
Algorithm 6: Handle saturated subgraphs.

Input:
- \(V \) – vector of remaining ports for each component replicate
- \(E \) – vector of edges in sequential pairs
- \(V_f \) – initial vector of ports available for each component replicate
- \(M \) – vector indicating if all replicates of the component type must be present
- \(cV_f \) – cumulative sum of the original \(V \) plus 1
- \(SavedGraphs \) – set of graphs

Output: \(SavedGraphs \) – set of graphs

1. If there are any necessary components then
 2. \(iNonSat \leftarrow \text{find}(V) \) /* find the nonsaturated components */
 3. If \(V(iNonSat) = V_f(iNonSat) \) then /* check for saturated subgraph */
 4. \(nUncon \leftarrow \text{sum}(M(iNonSat)) \) /* # of mandatory comps not in saturated subgraph */
 5. If \(nUncon = 0 \) then /* all mandatory components are in saturated subgraph */
 6. For \(j \leftarrow 1 \) to \(\text{sum}(V) \) do /* add remaining edges in arbitrary order */
 7. \(k \leftarrow \text{find}(V, 1) \) /* find first nonzero entry */
 8. \(LR \leftarrow cV_f(k) - V(k) \)
 9. \(V(k) \leftarrow V(k) - 1 \) /* remove port */
 10. \(E \leftarrow [E, LR] \) /* add port */
 11. \(SavedGraphs\{end + 1\} \leftarrow E \) /* missorted perfect matching */
 12. Continue /* stop iteration, graph has been added */
 13. Else if \(nUncon = \text{sum}(M) \) then /* no mandatory comps are in saturated subgraph */
 14. /* continue with this iteration */
 15. Else /* some but not all mandatory components are in saturated subgraph */
 16. Continue /* stop iteration, this graph is infeasible */
 17. End
18. End

6.3 Examples

6.3.1 Example 1

The base three-tuple and NSCs for this example are specified as:

\[
C = \{X, Y\}, \quad R = [2 3], \quad P = [2 2], \quad S_3 \text{ with } M = [1 0] \quad (18)
\]

Some of the other inputs are then:

\[
V_f = [2 2 2 2 2], \quad M = [1 1 0 0 0] \quad (19)
\]

We will consider two different \(V \), one after an initial edge is added and one at some intermediate iteration. Figure 6a goes through the operations in Algorithm 6 for the different \(V \). These example iterations are also visualized in Figs. 6b and 6c.

Table 9 compares the original algorithm with the enhancement for this example. There is a reduction in candidate graphs generated while the number of unique graphs remains the same.

6.3.2 Example 2

The base three-tuple and NSCs for this example are specified as:

\[
C = \{X\}, \quad R = [9], \quad P = [2], \quad S_3 \text{ with } M = [1] \quad (20)
\]
Some of the other inputs are then:

\[
V_f = [2 2 2 2 2 2 2 2 2], \quad M = [1 1 1 1 1 1 1 1 1]
\] (21)

We will consider two different V, one after an initial edge is added and one at some intermediate iteration. Figure 7a goes through the operations in Algorithm 6 for the different V. These example iterations are also visualized in Figs. 7b and 7c.

Table 10 compares the original algorithm with the enhancement for this example. There is a reduction in candidate graphs generated while the number of unique graphs remains the same.

Table 10: Comparison (saturated subgraphs, Example 2).

<table>
<thead>
<tr>
<th></th>
<th>Orig</th>
<th>En</th>
<th>Orig/En</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidate Graphs</td>
<td>852316</td>
<td>460872</td>
<td>1.85</td>
</tr>
<tr>
<td>Unique Graphs</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Generation Time (s)</td>
<td>29.83</td>
<td>19.23</td>
<td>1.55</td>
</tr>
<tr>
<td>Total Time (s)</td>
<td>58.57</td>
<td>33.11</td>
<td>1.77</td>
</tr>
</tbody>
</table>
Intermediate 1

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 1 & 2 & 1 & 2 & 2 & 2 \\
0 & 0 & 0 & 0 & 2 & 0 & 2 & 2 & 2 & 2 \\
\end{bmatrix}
\]

Intermediate 2

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 2 & 0 & 2 & 2 & 2 & 2 \\
0 & 0 & 0 & 0 & 2 & 0 & 2 & 2 & 2 & 2 \\
\end{bmatrix}
\]

iNonSat ← find(V)

\[
\begin{bmatrix}
4 & 5 & 6 & 7 & 8 & 9 \\
5 & 7 & 8 & 9 & & \\
\end{bmatrix}
\]

V(iNonSat) = [1 2 1 2 2 2]

Vf(iNonSat) = [2 2 2 2 2 2]

V(iNonSat) = Vf(iNonSat)

False

M(iNonSat) = [1 1 1 1]

nUncon ← sum(M(iNonSat))

4

Feasible = False

True

M

\[
\begin{bmatrix}
1 & 1 & 1 & 1 \\
\end{bmatrix}
\]

nUncon ← sum(M)

4

Feasible

No

(a) Algorithm operations.

(b) Intermediate 1 iteration.

(c) Intermediate 2 iteration.

Figure 7: Example 2 for Algorithm 6 (saturated subgraphs).
7 Enumerating Subcatalogs

Leveraging some of the properties of the graph structure space and some NSCs, we can break the graph generation procedure into subtasks that more efficiently generate the same graph structure space.

7.1 Theory

A candidate architecture in an architecture design space described by \((C, R, P)\) has the following properties [1]:

1. A set of component replicates bounded by \((C, R, P)\). This set of component replicates is termed a subcatalog of \((C, R, P)\).

2. Each port in \((V^P, \{\}, L^P)\), i.e., \(G^P\) without edges, is connected to another port (this implies an even number of ports).

The original tree algorithm in Alg. 1 generated all candidate architectures in this architecture design space since the set of PMs graphs of \(K_N\) contains all edge sets for \(K_{N-2}\), where \(N \geq 4\) [1]. Instead of relying on this property, an alternative would be an enumeration of all possible subcatalogs of \((C, R, P)\). This property is no longer strictly needed since the edge sets of the PMs of \(K_N\) for each subcatalog is enough to generate all the desired graphs. However, this approach on its own provides no general improvements to the graph generation procedure.

If we require every graph to be a connected graph \((S_1)\), we can enforce the following: A feasible graph for a specific subcatalog must have every component replicate connected (i.e., all the replicates are mandatory). This is due to the tree algorithm being utilized on every subcatalog. Enumerating subcatalogs only provides general improvements to the graph generation procedure if the property that all replicates are mandatory in each subcatalog is effectively utilized.

Two of the previously discussed enhancements utilize this property: 1) checking for saturated subgraphs in Sec. 6 and 2) avoiding loops in Sec. 3. A greater proportion of mandatory component types improves the effectiveness of these enhancements. Another benefit is isomorphism checks only need to be performed between graphs in their respective subcatalog. Since every component type is mandatory in the subcatalog, the colored label sets will be different between graphs in different subcatalogs. Therefore, graphs from different subcatalogs are definitely not isomorphic. This reduces the number of isomorphism checks and allows for further parallelization. Finally, the generation of graphs for each subcatalog can be performed in parallel. However, each subcatalog will take varying amounts of time to complete so the benefit will vary depending on the particular \((C, R, P)\) and NSCs. The original tree algorithm does not leverage parallelization during the graph generation procedure.

This enhancement also allows for an improved representation of the number of replicates for each component type. Instead of the original vector \(R\), where each entry was the maximum number of replicates for the specific component type, minimum and maximum values can be specified. The maximum values, denoted \(R_{\text{max}}\), is equivalent to the previous \(R\). The minimum values, denoted \(R_{\text{min}}\), can naturally capture mandatory components and nonzero lower bounds. Every nonzero element of \(R_{\text{min}}\) indicates a mandatory component type. If \(R_{\text{min}}\) and \(R_{\text{max}}\) for a component type is 2 and 5, then there must be between 2 and 5 replicates in a feasible graph.
The set of subcatalogs contains all possible combinations of integers values for each component type bounded by R_{min} and R_{max}. Therefore, the total number of subcatalogs is:

$$N_{\text{subcatalogs}} = \prod_{k=1}^{\mid R_{\text{max}} \mid} \left[R_{\text{max}}(k) - R_{\text{min}}(k) + 1 \right]$$ \hspace{1cm} (22)

7.2 Implementation

Algorithm 7: Generate set of unique, feasible graphs using subcatalogs.

Input:
- R_{min} – vector indicating min number of replicates for each component type
- R_{max} – vector indicating the max number of replicates for each component type
- C – colored label set
- P – ports vector
- NSC – structure for the network structure constraints

Output:
- FinalGraphs – set of unique, feasible graphs

```plaintext
1 $N_{\text{subcatalogs}} \leftarrow \prod (R_{\text{max}} - R_{\text{min}} + 1)$ /* number of subcatalogs */
2 for $k \leftarrow 1 \text{ to length}(R_{\text{max}})$ do /* for each component type */
3     \[ R_{\text{list}}\{k\} \leftarrow R_{\text{min}}(k) : 1 : R_{\text{max}}(k) \] /* list of potential number of replicates */
4 end
5 Subcatalogs \leftarrow \text{ndgrid}(R_{\text{list}}) /* generate all subcatalogs */
6 nsc \leftarrow \text{NSC} /* local NSC structure */
7 for $k \leftarrow 1 \text{ to } N_{\text{subcatalogs}} \text{ do in parallel}$
8     for $j \leftarrow 1 \text{ to length}(R_{\text{max}})$ do
9         \[ r(j) \leftarrow \text{Subcatalogs}(j)(k) \] /* extract R vector for this catalog test */
10    end
11    if $N_{p}$ is even then
12        $I \leftarrow r \neq 0$ /* nonzero replicate locations */
13        $c \leftarrow C(I)$ /* extract colored labels */
14        $r \leftarrow r(I)$ /* extract replicates vector */
15        $p \leftarrow P(I)$ /* extract ports vector */
16        $\text{nsca} \leftarrow \text{NSC}.A(I,:)$ /* extract reduced potential adjacency matrix */
17        $\text{nsca}(:,I) \leftarrow \text{NSC}.A(:,I) /* symmetric */$
18        $\text{nsca} \leftarrow \text{extract appropriate line-connectivity triples using NSC.B and I}$
19        $\text{nsca}.M \leftarrow \text{ones(size}(r))$ /* all component types are mandatory */
20        \[ \text{Graphs}(k) \leftarrow \text{generate feasible graphs for this subcatalog using } c, r, p, \text{ and } nsc \]
21    end
22 end
23 for $k \leftarrow 1 \text{ to } N_{\text{subcatalogs}} \text{ do in parallel}$ /* obtain unique graphs */
24     Graphs\{k\} \leftarrow \text{determine set of unique graphs in } \text{Graphs}\{k\}
25 end
26 $\text{FinalGraphs} \leftarrow \text{combine unique graphs from each subcatalog using } \text{Graphs}$
```

Algorithm 7 is the pseudocode for the implementation of this enhancement. This enhancement is only called if we require every graph to be a connected graph (S_1). First, we calculate the number of subcatalogs. Next, the potential number of replicates for each component type is stored in a cell array, R_{list}. All subcatalogs are then generated with ndgrid using R_{list}. This function creates a rectangular grid in N-D space [6]. The final step before generating the graphs is to create a local copy of the network structure constraints since they are modified for each subcatalog. Generating graphs for each subcatalog can now be performed in parallel (see line 7). A particular subcatalog is only evaluated if it contains an even number of ports. Before a subcatalog is used, a number of items need to be updated to properly define the subcatalog. We find the locations of the nonzero replicates on
line 13. Then the colored labels, replicates vector, and ports vector are updated for this subcatalog, only including component types with at least one replicate. In addition, both the reduced potential adjacency matrix and line-connectivity triples need to be updated to include only the relevant constraints for this subcatalog. Some component types may not be present in a particular subcatalog, so any NSCs with these component types are not needed. Since all component types are mandatory in this approach, we set each component type as mandatory on line 20. Finally, we generate feasible graphs for this subcatalog using the same method used for a single catalog.

After the feasible graphs have been found, each subcatalog can be analyzed for the set of unique graphs. Again, this task can be performed in parallel as each subcatalog is independent. The final step is to combine all the unique graphs into a single set.

7.3 Examples

These examples are tested using this enhancement and the handling of saturated subgraphs in Sec. 6.

7.3.1 Example 1

The base three-tuple and NSCs for this example are specified as:

$$C = \{X, Y\}, \quad R_{\text{min}} = [1 \ 0], \quad R_{\text{max}} = [1 \ 8], \quad P = [2 \ 2]$$ (23)

All 9 subcatalogs for this example are shown in Table 11.

Table 12 compares the original algorithm with the enhancement for this example. There is a reduction in feasible graphs generated while the number of unique graphs remains the same. The enhancement with 12 threads (12T) and 1 thread (1T) available is shown.

<table>
<thead>
<tr>
<th>#</th>
<th>r</th>
<th>c</th>
<th>p</th>
<th>Feasible Graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[1]</td>
<td>{X}</td>
<td>[2]</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>[1 1]</td>
<td>{X, Y}</td>
<td>[2 2]</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>[1 2]</td>
<td>{X, Y}</td>
<td>[2 2]</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>[1 3]</td>
<td>{X, Y}</td>
<td>[2 2]</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>[1 4]</td>
<td>{X, Y}</td>
<td>[2 2]</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>[1 5]</td>
<td>{X, Y}</td>
<td>[2 2]</td>
<td>60</td>
</tr>
<tr>
<td>7</td>
<td>[1 6]</td>
<td>{X, Y}</td>
<td>[2 2]</td>
<td>360</td>
</tr>
<tr>
<td>8</td>
<td>[1 7]</td>
<td>{X, Y}</td>
<td>[2 2]</td>
<td>2520</td>
</tr>
<tr>
<td>9</td>
<td>[1 8]</td>
<td>{X, Y}</td>
<td>[2 2]</td>
<td>20160</td>
</tr>
</tbody>
</table>

7.3.2 Example 2

The base three-tuple and NSCs for this example are specified as:

$$C = \{W, X, Y, Z\}, \quad R_{\text{min}} = [1 \ 0 \ 0 \ 0], \quad R_{\text{max}} = [1 \ 2 \ 3 \ 3], \quad P = [1 \ 1 \ 2 \ 3]$$ (24)

A select number of the 48 subcatalogs for this example are shown in Table 13.
Table 12: Comparison (enumerating subcatalogs, Example 1).

<table>
<thead>
<tr>
<th></th>
<th>Orig</th>
<th>En</th>
<th>En (12T)</th>
<th>Orig/En</th>
<th>Orig/En (12T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feasible Graphs</td>
<td>96940</td>
<td>23118</td>
<td>23118</td>
<td>4.19</td>
<td>4.19</td>
</tr>
<tr>
<td>Unique Graphs</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Generation Time (s)</td>
<td>34.52</td>
<td>31.19</td>
<td>29.03</td>
<td>1.11</td>
<td>1.19</td>
</tr>
<tr>
<td>Total Time (s)</td>
<td>51.79</td>
<td>35.44</td>
<td>33.34</td>
<td>1.46</td>
<td>1.55</td>
</tr>
</tbody>
</table>

Table 14 compares the original algorithm with the enhancement for this example. There is a reduction of feasible graphs generated while the number of unique graphs remains the same. The enhancement with 12 threads (12T) available is also shown.

Table 13: Select subcatalogs for Example 2.

<table>
<thead>
<tr>
<th>#</th>
<th>r</th>
<th>c</th>
<th>p</th>
<th>Feasible Graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[1 0 0 0]</td>
<td>{W}</td>
<td>[1]</td>
<td>– (odd)</td>
</tr>
<tr>
<td>2</td>
<td>[1 1 0 0]</td>
<td>{W, X}</td>
<td>[1 1]</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>[1 2 0 0]</td>
<td>{W, X}</td>
<td>[1 1]</td>
<td>– (odd)</td>
</tr>
<tr>
<td>4</td>
<td>[1 0 1 0]</td>
<td>{W, Y}</td>
<td>[1 2]</td>
<td>– (odd)</td>
</tr>
<tr>
<td>5</td>
<td>[1 1 1 0]</td>
<td>{W, X, Y}</td>
<td>[1 1 2]</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>44</td>
<td>[1 1 2 3]</td>
<td>{W, X, Y, Z}</td>
<td>[1 1 2 3]</td>
<td>– (odd)</td>
</tr>
<tr>
<td>45</td>
<td>[1 2 2 3]</td>
<td>{W, X, Y, Z}</td>
<td>[1 1 2 3]</td>
<td>1548</td>
</tr>
<tr>
<td>46</td>
<td>[1 0 3 3]</td>
<td>{W, Y, Z}</td>
<td>[1 2 3]</td>
<td>1683</td>
</tr>
<tr>
<td>47</td>
<td>[1 1 3 3]</td>
<td>{W, X, Y, Z}</td>
<td>[1 1 2 3]</td>
<td>– (odd)</td>
</tr>
<tr>
<td>48</td>
<td>[1 2 3 3]</td>
<td>{W, X, Y, Z}</td>
<td>[1 1 2 3]</td>
<td>11844</td>
</tr>
</tbody>
</table>

Table 14: Comparison (enumerating subcatalogs, Example 2).

<table>
<thead>
<tr>
<th></th>
<th>Orig</th>
<th>En</th>
<th>En (12T)</th>
<th>Orig/En</th>
<th>Orig/En (12T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feasible Graphs</td>
<td>45015</td>
<td>16235</td>
<td>16235</td>
<td>2.77</td>
<td>2.77</td>
</tr>
<tr>
<td>Unique Graphs</td>
<td>489</td>
<td>489</td>
<td>489</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Generation Time (s)</td>
<td>9.68</td>
<td>13.49</td>
<td>11.40</td>
<td>0.72</td>
<td>0.85</td>
</tr>
<tr>
<td>Total Time (s)</td>
<td>95.68</td>
<td>74.33</td>
<td>72.11</td>
<td>1.29</td>
<td>1.33</td>
</tr>
</tbody>
</table>
References

A Project Code

The project code is available at Ref. [7]. The enhancements discussed in this report have been included in commit 7d8c14d. Table 15 lists the enhancements and the functions that have been added/modified to implement the enhancement.

<table>
<thead>
<tr>
<th>Enhancement</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replicate Ordering</td>
<td>TreeEnumerateCreatev8</td>
</tr>
<tr>
<td>Avoiding Loops</td>
<td>ExpandPossibleAdj</td>
</tr>
<tr>
<td>Avoiding Multi-Edges</td>
<td>TreeEnumerateCreatev8</td>
</tr>
<tr>
<td>Avoiding Line-Connectivity Constraints</td>
<td>TreeEnumerateCreatev8</td>
</tr>
<tr>
<td>Checking for Saturated Subgraphs</td>
<td>CreateBMatrix</td>
</tr>
<tr>
<td>Enumerating Subcatalogs</td>
<td>TreeEnumerateCreatev8</td>
</tr>
<tr>
<td></td>
<td>GenerateWithSubcatalogs</td>
</tr>
<tr>
<td></td>
<td>UniqueUsefulGraphs</td>
</tr>
</tbody>
</table>

B Case Studies from Ref. [1]

In Figs. 8–10, the results from the case studies in Ref. [1] are compared with the enhancements in this report. All enhancements are present in the comparisons and 12 threads available for any parallel computing tasks.
(a) Example 1.

<table>
<thead>
<tr>
<th></th>
<th>Orig</th>
<th>En</th>
<th>Orig/En</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidate Graphs</td>
<td>86</td>
<td>41</td>
<td>2.10</td>
</tr>
<tr>
<td>Feasible Graphs</td>
<td>77</td>
<td>39</td>
<td>1.97</td>
</tr>
<tr>
<td>Unique Graphs</td>
<td>16</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Generation Time (s)</td>
<td>0.10</td>
<td>0.08</td>
<td>1.25</td>
</tr>
<tr>
<td>Total Time (s)</td>
<td>0.58</td>
<td>0.34</td>
<td>1.71</td>
</tr>
</tbody>
</table>

(b) Example 2.

<table>
<thead>
<tr>
<th></th>
<th>Orig</th>
<th>En</th>
<th>Orig/En</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feasible Graphs</td>
<td>23</td>
<td>11</td>
<td>2.09</td>
</tr>
<tr>
<td>Unique Graphs</td>
<td>5</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Generation Time (s)</td>
<td>0.14</td>
<td>0.013</td>
<td>10.77</td>
</tr>
<tr>
<td>Total Time (s)</td>
<td>0.23</td>
<td>0.097</td>
<td>2.37</td>
</tr>
</tbody>
</table>

Figure 8: Comparison (Case Study 1).

(a) Example 1.

<table>
<thead>
<tr>
<th></th>
<th>Orig</th>
<th>En</th>
<th>Orig/En</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidate Graphs</td>
<td>1119</td>
<td>633</td>
<td>1.77</td>
</tr>
<tr>
<td>Feasible Graphs</td>
<td>767</td>
<td>442</td>
<td>1.74</td>
</tr>
<tr>
<td>Unique Graphs</td>
<td>260</td>
<td>260</td>
<td>1</td>
</tr>
<tr>
<td>Generation Time (s)</td>
<td>0.23</td>
<td>0.21</td>
<td>1.10</td>
</tr>
<tr>
<td>Total Time (s)</td>
<td>2.55</td>
<td>2.03</td>
<td>1.26</td>
</tr>
</tbody>
</table>

(b) Example 2.

<table>
<thead>
<tr>
<th></th>
<th>Orig</th>
<th>En</th>
<th>Orig/En</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feasible Graphs</td>
<td>767</td>
<td>212</td>
<td>3.62</td>
</tr>
<tr>
<td>Unique Graphs</td>
<td>137</td>
<td>137</td>
<td>1</td>
</tr>
<tr>
<td>Generation Time (s)</td>
<td>0.26</td>
<td>0.15</td>
<td>1.73</td>
</tr>
<tr>
<td>Total Time (s)</td>
<td>0.77</td>
<td>0.61</td>
<td>1.26</td>
</tr>
</tbody>
</table>

(c) Example 3.

<table>
<thead>
<tr>
<th></th>
<th>Orig</th>
<th>En</th>
<th>Orig/En</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feasible Graphs</td>
<td>31</td>
<td>22</td>
<td>1.41</td>
</tr>
<tr>
<td>Unique Graphs</td>
<td>12</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Generation Time (s)</td>
<td>0.21</td>
<td>0.015</td>
<td>14.00</td>
</tr>
<tr>
<td>Total Time (s)</td>
<td>0.24</td>
<td>0.043</td>
<td>5.58</td>
</tr>
</tbody>
</table>

(d) Example 4.

<table>
<thead>
<tr>
<th></th>
<th>Orig</th>
<th>En</th>
<th>Orig/En</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feasible Graphs</td>
<td>34</td>
<td>25</td>
<td>1.36</td>
</tr>
<tr>
<td>Unique Graphs</td>
<td>14</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>Generation Time (s)</td>
<td>0.22</td>
<td>0.015</td>
<td>14.67</td>
</tr>
<tr>
<td>Total Time (s)</td>
<td>0.25</td>
<td>0.049</td>
<td>5.10</td>
</tr>
</tbody>
</table>

Figure 9: Comparison (Case Study 2).
(a) Additional NSCs.

(b) Feasible Graphs

<table>
<thead>
<tr>
<th></th>
<th>Orig</th>
<th>En</th>
<th>Orig/En</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feasible Graphs</td>
<td>forthcoming</td>
<td>forthcoming</td>
<td>forthcoming</td>
</tr>
<tr>
<td>Unique Graphs</td>
<td>forthcoming</td>
<td>forthcoming</td>
<td>forthcoming</td>
</tr>
<tr>
<td>Generation Time (s)</td>
<td>forthcoming</td>
<td>forthcoming</td>
<td>forthcoming</td>
</tr>
<tr>
<td>Total Time (s)</td>
<td>forthcoming</td>
<td>forthcoming</td>
<td>forthcoming</td>
</tr>
</tbody>
</table>

Figure 10: Comparison (Case Study 3).