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Abstract
This technical report outlines an approach to calculate derivative func-

tions for Simscaper models and use them to solve optimal control prob-
lems. Although this approach is less efficient than analytic expression for
the derivatives, not every problem will have these directly available due
to a variety of reasons, including multidomain, multibody, large-scale,
automatically generated, or proprietary models. A step-by-step proce-
dure is presented to assist utilizing this approach. The canonical Bryson-
Denham state-constrained double integrator optimal control problem is
used as a test optimal control problem. A number of control formulations
are compared to demonstrate the computational expense of this approach
compared to analytic expressions of the state derivatives and additional
benefits including improved final solutions and execution time over more
traditional formulations. In particular, direct transcription solutions are
decidedly more efficient than the common shooting approach. Coupled
with an optimal control toolbox, the user will no longer need to worry
about expressing complex derivative equations or the implementation de-
tails of their optimal control problem, allowing the focus to be shifted
towards solving more complex problems.
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1 Motivation for using Simscaper Derivatives
Consider the following general optimal control problem with a Bolza objective:

min
u

Ψ =
∫ tf

t0

L (ξ(t),u(t), t) dt+M (ξ(t0), t0, ξ(tf ), tf ) (1)

subject to: φmin ≤ φ (ξ(t0), t0, ξ(tf ), tf ) ≤ φmax (2)
Cmin ≤ C (ξ(t),u(t), t) ≤ Cmax (3)
ξ̇(t) = fd (ξ(t),u(t), t) (4)

where ξ(t), u(t), and t represent, respectively, system state, control, and time
[1–4]. Equation (1) is the cost functional that is to be minimized. The dy-
namic constraints are given in Eqn. (4). The boundary constraints are given in
Eqn. (2), and the inequality path constraints are given in Eqn. (3). A classical
or indirect approach for solving this type of problem is to apply optimality con-
ditions, such as Pontryagin’s maximum principle [5]. If an analytic solution to
the optimality conditions cannot be found, the resulting boundary value prob-
lem can be solved numerically. Path constraints are extremely challenging to
incorporate in this solution approach. Additional issues motivate alternative
solution procedures [4].
Instead of finding the optimality conditions directly, we can first discretize

the problem and then transcribe it to a nonlinear programming (NLP) for-
mulation. In other words, the infinite-dimensional optimal control problem is
transcribed to a finite-dimensional NLP. A shooting approach discretizes the
control trajectory only and predicts the dynamics through a forward simulation
[1]. A computational model such as a Simscaper model can be utilized to
provide a forward simulation the dynamics of the system. The Simulink De-
sign OptimizationTM toolbox uses this approach to tune design parameters
to improve system performance or model estimation.1 However, this can be
extremely computationally expensive and is typically unsuited for complex en-
gineering problems such as co-design problems due to convergence issues [3, 4].
The optimal control formulation is modified to express the forward simulation
of the computational model to calculate the dynamics:

min
u

Ψ =
∫ tf

t0

L (ξ(t),u(t), t) dt+M (ξ(t0), t0, ξ(tf ), tf )

subject to: φmin ≤ φ (ξ(t0), t0, ξ(tf ), tf ) ≤ φmax

Cmin ≤ C (ξ(t),u(t), t) ≤ Cmax

where: ξ̇(t) = fd (ξ(t),u(t), t) (5)

Another approach within the class of direct methods of optimal control is di-
rect transcription (DT). Differing from shooting methods, DT discretizes both
the state and control and the NLP algorithm simultaneously solves the sys-
tem state equations and the system optimization problem, eliminating the need

1http://www.mathworks.com/products/sl-design-optimization/
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for forward simulation [3]. Some of the advantages of DT include numerical
stability, efficient solution procedures due to the problem structure and spar-
sity pattern, natural inclusion of path constraints, and solving singular optimal
control problems [4]. A number of commercial software packages are available
that solve problems using DT, typically with pseudospectral methods, including
GPOPS− II [2, 6] and PROPT [7]. This approach requires the optimization of
both the control and state variables, while the dynamic constraints are expressed
as defect constraints (ζ):

min
ξ,u

Ψ =
∫ tf

t0

L (ξ(t),u(t), t) dt+M (ξ(t0), t0, ξ(tf ), tf )

subject to: φmin ≤ φ (ξ(t0), t0, ξ(tf ), tf ) ≤ φmax

Cmin ≤ C (ξ(t),u(t), t) ≤ Cmax

ζ (ξ(t),u(t), t) = ξ̇(t)− fd (ξ(t),u(t), t) = 0 (6)

This approach requires evaluation of state derivative values. In system
optimization problems based on sophisticated system models, it may be difficult
to derive the state derivative function. In the past, this has limited the type of
problems that could be solved using DT. This limitation is the motivation for
investigating how Simscaper models could be used as a basis for DT problem
solution implementations, increasing the sophistication of models that may be
used with DT.
Finding analytic or closed-form solutions for the state derivatives can be chal-

lenging or inefficient for a number of problems:

• Multidomain models spanning multiple energy domains can produce mod-
els that are both challenging and inefficient to find the analytic state
derivatives.2

• Multibody models for mechanical systems such as robotics typically have
highly nonlinear dynamics, but can be easily represented in simulation
environments such as SimMechanicsTM.3

• Large-scale models where the number of components prevents an efficient
process of writing closed-form solutions for the state derivatives.

• Automatically generated models such as ones used in system architecture
studies where the efficiency of the study requires the algorithm to operate
on a large number of models with varying architectures and therefore state
derivatives if DT is used [3].

• Proprietary or closed-source models such as some Simscaper libraries
where the user is not allowed to view the analytic equations, but can run
simulations.

2http://www.mathworks.com/physical-modeling/model-multidomain-physical-systems.html
3http://www.mathworks.com/products/simmechanics/
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This report introduces a new strategy for using sophisticated mutlidomain
models with DT, presents a case study using this technique, and demonstrates
the value of this solution approach in terms of numerical efficiency when com-
pared to standard optimization methods.

2 Implementation of Simscaper Derivatives
Step 1: Create a Simscaper model (this may work with Simulinkr models
but has not been tested by the author). Include control through a custom Time-
Based Lookup Table with its mask shown in Fig. 1a. This is a slightly modified
version of the PS Lookup Table (1D) with the input value along the first direction
valued as the internal time variable of the tablelookup function4:
O == tablelookup(x_t, y_t, time);

f(x) = 0

Solver

Mass

Ground

R
C

S

Force SourceTime-Based Lookup
Table (1D)

P

V

C

R

Sensor

(a) Custom time-based lookup table.

Clock

S PS

Simulink-PS
Converter

PS Lookup 
Table (1D)

(b) Simscaper foundation equivalent.

Figure 1 Blocks for adding open loop control to Simscaper models.

Step 2: Determine the ordering of the input vector for the model command
by observing the results from a test run.5 One method to accomplish is this
using the Performance Advisor. The Performance Advisor can be accessed through
Simulink Editor, select Analysis>Performance Tools>Performance Advisor
or by the following command:6

performanceadvisor(p.model)

Once the Performance Advisor is open, select Check to view baseline signals
and set their tolerances in the Create Baseline test. Then run the test
and observe the ordering of the signals. This also gives you the signal names.
Refer to the page linked to in the footnote if the test will not run.7
Step 3: Execute the compilation phase of the model in p.model before the
optimization program is called.
eval([p.model,'([],[],[],''compile'');'])

4http://www.mathworks.com/help/physmod/simscape/lang/tablelookup.html
5http://www.mathworks.com/help/simulink/slref/model_cmd.html
6http://www.mathworks.com/help/simulink/ug/getting-started-with-performance-advisor.html
7http://www.mathworks.com/help/simulink/slref/simulink-checks_bth9tg2-2.html
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Step 4: From inside the function that requires derivative values (such as the
nonlinear constraint function), extract the states and control matrices from the
optimization vector. This function will be problem-specific.
[t,uMat,sMat] = extractStatesControl(x,p);

Step 5: Initialize the derivative matrix where the row number corresponds to
the time index and the column number correspond to either the state or control
index. The control needs to be added since the Simscaper model has states
for the custom lookup table. Then a loop is created to add the derivative values
row by row. Inside this loop, the input vector needs to be specified, xIn (this
is also problem specific and one must ensure the states and control are ordered
properly, see Step 2). Finally, the model command is called using with the flag
set to output the derivatives.
fdMat = zeros(p.nt,p.ns+p.nc);
for i = 1:p.nt

xIn = [sMat(i,:),uMat(i,:)];
fdMat(i,:) = eval([p.model,'(','t(i),','xIn,','[],''derivs'');']);

end

Step 6: Next, remove control derivatives since they are always equal to zero and
will not be needed where p.uLoc is the locations in xIn of the control variables:
fdMat(:,p.uLoc) = [];

Step 7: Finally, terminate the model using the model command so that the
model can be used in the future.
eval([p.model,'([],[],[],''term'');'])

Shown below are some sample commands for the Simscaper model named
BrysonDenhamModel:
BrysonDenhamModel([], [], [], 'compile') % step 3
fdMat(i,:) = BrysonDenhamModel(t(i),xIn,[],'derivs'); % step 5
BrysonDenhamModel([], [], [], 'term')} % step 7
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3 Bryson-Denham State-Constrained Double In-
tegrator Optimal Control Problem

3.1 Problem Statement
The Bryson-Denham state-constrained double integrator optimal control prob-
lem is a simple canonical test problem that will be used to demonstrate optimal
control implementations that utilize Simscaper derivatives. A fully specified
Bryson-Denham problem is formulated as:

min
u(t)

1
2

∫ 1

0
u2dt (7)

subject to:

ξ̇(t) =
[
ẋ
v̇

]
=
[
v
u

]
(8)

ξ(0) =
[
x(0)
v(0)

]
=
[
0
1

]
(9)

ξ(1) =
[
x(1)
v(1)

]
=
[

0
−1

]
(10)

x(t) ≤ ` = 1
9 (11)

where Eqn. (7) is the objective function, Eqn. (8) are the dynamic constraints,
Eqns. (9) and (10) are the boundary conditions, and Eqn. (11) is the state-
inequality path constraint. This dynamic system is analogous to moving a point
mass. The closed-form solution to this problem when 0 ≤ ` ≤ 1

6 is presented in
Ref. [5, p. 122]:

u(t) =

 −
2
3`

(
1− t

3`

)
0 ≤ t ≤ 3`

0 3` ≤ t ≤ 1− 3`
− 2

3`

(
1− 1−t

3`

)
1− 3` ≤ t ≤ 1

(12)

v(t) =


(
1− t

3`

)2 0 ≤ t ≤ 3`
0 3` ≤ t ≤ 1− 3`

−
(
1− 1−t

3`

)2 1− 3` ≤ t ≤ 1
(13)

x(t) =


`
(

1−
(
1− t

3`

)3
)

0 ≤ t ≤ 3`
` 3` ≤ t ≤ 1− 3`

`
(

1−
(
1− 1−t

3`

)3
)

1− 3` ≤ t ≤ 1
(14)

The value of the cost functional at the optimal solution is:

Ψ = 4
9` (15)
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3.2 Simscaper Model
The Simscaper model for this example is displayed in Fig. 2. The Time-Based
Lookup Table (1-D) block is used for the control and is fed into an ideal Force
Source that acts on a Mass block. An additional sensor is required to log the
position of the mass. Finally the Simscaper Solver block is added to solve the
problem. The Simulation Data Inspector output for this model is shown in Fig. 3.
As explained in Sec. 2 Step 2, the ordering of the states and control is based on
this output.

3.3 Results
This problem has been solved previously using a number of optimal control
software packages including GPOPS− II8 and PROPT9, along with the closed-
form solution. Six different methods were employed here to solve the problem.
The first 2 methods (M1 and M2) used single shooting (S) with 101 equally
spaced optimization variables to represent the control trajectory. The former
used an analytic derivative function with ode23tb as the solver. The latter
directly used the Simscaper model to determine the states.

The other four methods use DT. M3 and M4 use trapezoidal (T) collocation
with 101 equally spaced collocation points. These methods differ by the calcu-
lation method for the derivatives: M3 uses analytic expressions, i.e., Eqn. (8),
and M4 uses Simscaper derivatives. M5 and M6 use the software package
GPOPS− II10 (a commercial implementation of pseudospectral (PS) methods,
which are a subclass of DT) [2]. Again the former uses analytic expressions and
the latter uses Simscaper derivatives.
The results are shown in Fig. 5 and summarized in Table 1. Figure 6 plots the

absolute error between the method and the closed-form solution in Eqns. (12) –
(14). All the methods were able to find a similar result to the closed-form
solution, but a number of differences were noted.

3.3.1 Use of the Derivative Function

Each method had different levels of use of the available derivative function.
First, S methods tend to need the derivative function more often because for
each perturbation in the optimization algorithm, the entire time horizon needs
to be simulated (which requires lots of calls to the derivative function). M1 and
M3 had nearly the same number of derivative function calls and total time spent
calculating the derivatives. Therefore, the time per derivative function call was
nearly the same between the methods, implying that the analytic derivative
function was only slightly faster to call than the Simscaper version (1.2×10−4

s compared to 1.3×10−4 s). The PS methods required fewer derivative function
8http://www.gpops2.com/Examples/Bryson-Denham/Bryson-Denham.html
9http://tomopt.com/docs/propt/tomlab_propt018.php

10Warning! GPOPS − II is not provided with this submission but can be purchased from
http://www.gpops2.com/Purchase/Purchase.html. M5 and M6 will produce errors if the files are
not located in the path.
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f(x) = 0

Solver

Mass

Ground

R
C

S

Force SourceTime-Based Lookup
Table (1D)

P

V

C

R

Sensor

Figure 2 Simscaper model (BrysonDenhamModel.slx).

Figure 3 Simulation Data Inspector for viewing the internal state and control
ordering for the Bryson-Denham problem.
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Figure 4 Closed-form solution from Ref. [5].

calls than either S or T, even with mesh refinement (discussed in the next
section).
A major factor explaining the number of derivative calls required was the

vectorization of the analytic derivatives. Vectorization uses matrix and vec-
tor operations to produce the desired calculation instead of loop-based, scalar-
oriented code. Vectorization is typically more computationally efficient than
loops. This is evident in the number of calls needed to the analytic derivative
function compared to the Simscaper derivative function for the same control
implementation (3344 compared to 337744 and 396 compared to 7151). Because
a basic for loop was used, the parallel computing resources of the machine were
not utilized when calculating the Simscaper derivatives. Using a parfor could
be more efficient, but parallel compiled builds of the model did not appear func-
tional for the model command. This factor would be even more influential for
more complex problems and derivative functions. Running parallel simulations
can also improve the computation time of a S method but does not reduce the
number of derivative function calls.

3.3.2 Total Time

The total time to solve the optimization problem varied greatly between the
solutions. By far the slowest was the shooting methods (M1, M2). The meth-
ods based on trapezoidal collocation (M3, M4) were faster, as were the methods
using GPOPS− II (M5, M6). The Simscaper derivatives were approximately
4541× slower compared to analytic derivatives for M3 and M4, while this ap-
proach was only 503× slower for M5 and M6. Even with this difference, overall
computation time was only 32× and 2.5× slower using Simscaper derivatives,
still making this an attractive approach. Most importantly, the DT solutions
that use Simscaper derivatives (M4, M6) were 16× and 646× faster than the
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(a) Results for shooting method with analytic
derivatives (method = 1).
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(b) Results for shooting method with a Simscaper

model (method = 2).
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(c) Results for direct transcription with trapezoidal
rule and analytic derivatives (method = 3).
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(d) Results for direct transcription with trapezoidal
rule and Simscaper derivatives (method = 4).
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(e) Results for pseudospectral method with analytic
derivatives (method = 5).
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(f) Results for pseudospectral method with
Simscaper derivatives (method = 6).

Figure 5 Results for each method.
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(b) Error for shooting method with Simscaper

model (method = 2).
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(c) Error for direct transcription with trapezoidal
rule and analytic derivatives (method = 3).
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(d) Error for direct transcription with trapezoidal
rule and Simscaper derivatives (method = 4).
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(f) Error for pseudospectral method with
Simscaper derivatives (method = 6).

Figure 6 Absolute error relative to the closed-form solution for each method.
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S approach that used the Simscaper model (M2)!
One contributing factor to the difference between T and PS was the large

number of time points used in the T formulation. Since no mesh accuracy
calculations were performed, the mesh needed to be dense enough to implic-
itly satisfy a specified mesh tolerance (i.e., trapezoidal collocation is accurate
enough at the mesh resolution of 10−6). On the other hand, GPOPS− II uti-
lizes adaptive mesh refinement, and it therefore efficiently provides a mesh for
the problem through iterative solution. More optimization variables increase
the required number of derivative function calls, explaining why GPOPS− II is
more efficient than DT with trapezoidal collocation.

3.3.3 Absolute Error Relative to Closed-Form Solution

Here we will discuss the differences between the final solution found for each
method and the closed-from solution in Eqns. (12) – (14). First, most of the
control trajectories are smooth with the exception of M2 (which directly uses
the Simscaper model). Shooting methods tend to have these stability issues
[1]. One might expect M1 and M2 to have the same results, but the differences
are most likely due to the differences in solver parameters. The solvers used
in Simscaper may have different settings to improve robustness or solution
efficiency at the cost of accuracy. Since this is a fairly simple optimal control
problem, the S methods perform reasonably well, but this is not the general
case [3].
Many of the plots in Fig. 5 are similar because the results are near the closed-

form solution. However, Fig. 6 shows that each method has different absolute
error patterns and magnitude. First note that (M3, M4) and (M5, M6) have
the same errors since the Simscaper derivatives were the exact same as the
analytic derivatives (demonstrating that these approaches are equivalent). M2
had the largest error, especially the control values. The errors for M1, M3, and
M4 were all very similar in both magnitude and pattern. The errors for each
of these methods can be approximately summarized by eu ≈ 10−3, ev ≈ 10−4,
and ex ≈ 10−5. The error pattern for the methods which use a PS method were
decidedly more chaotic. The magnitude of the errors were similar when the
path constraint was active while the control error was much smaller in the other
region. Therefore, the PS method was more accurate, but this is due to the
fact that mesh refinement was used. Overall on a pointwise basis, each method
found a reasonably close solution.

3.3.4 Final State Error Using ode15s

The resulting optimal control trajectory for each method was simulated using
the ode15s to observe the practical effectiveness of each solution result. This
was measured by comparing the final states from the simulation to the final
desired states described in the problem. ode15s is commonly used for stiff
systems and is an adaptive solver, so the order of accuracy will be higher than
the implicit trapezoidal rule previously used in M1–M4. The errors are shown

13



Table 1 Comparison between the methods.

ξ̇ (derivative function) error
# type calls time (s) time/call total (s) f xf vf

1 S analytic 399434 49.040 1.2×10−4 83.06 4.003 -1.5×10−4 1.3×10−4

2 S simscape 826678 753.888 9.1×10−4 757.55 3.752 9.1×10−2 1.0×10−1

3 T analytic 3344 0.010 3.0×10−6 1.53 4.004 4.1×10−4 3.1×10−3

4 T simscape 337744 45.411 1.3×10−4 48.62 4.004 4.1×10−4 3.1×10−3

5 PS analytic 396 0.002 5.1×10−6 0.47 4.000 -6.3×10−4 6.4×10−4

6 PS simscape 7151 1.005 1.4×10−4 1.17 4.000 -6.3×10−4 6.4×10−4

in Table 1. Each method, except for M2, perform well (i.e., errors less the
4× 10−3). M2 had error values that were two orders of magnitude worse. Even
though the solution for M2 looked similar to the closed-form solution, the result
was simply not accurate enough (not forgetting the extremely long computation
time).

3.3.5 Objective Function Values

Even though each method had the same base problem statement, they produced
slightly different values for the objective function (and optimization variables).
The closed-form optimal cost is 4 (see Eqn. (15)). With the same optimization
algorithm tolerances, M2 had a final objective function value of 3.752 (lower
than the closed-form solution). This is because the solver was not accurate
enough when calculating the states, and therefore produced a solution that is
not feasible with a higher-order method (see Sec. 3.3.3 and 3.3.4). In a sense,
this solution approach capitalized on the implementation inaccuracy. The other
methods that proved to be more accurate had objective function values between
4.000 and 4.004. GPOPS− IImethods produced the lower value of 4.000 (nearly
the same as the closed-form cost).

3.3.6 Convergence Behavior

Differences in the convergence behavior between each method can also be ob-
served in the command window outputs (see App. A). The S methods require
at least two major iterations to find a feasible solution while DT using T only
requires one major iteration. Generally, DT requires fewer iterations to converge
to both a feasible and optimal solution (recall that this was initially posed as
a infinite-dimensional problem in Sec. 3.1). Additional behavior, such as the
decrease in mesh error through the mesh refinement process, can be seen for M5
and M6.

14



4 Concluding Remarks
This technical report outlined an approach to calculate derivative functions for
Simscaper models and use them to solve optimal control problems. Although
this approach is less efficient than analytic expression for the derivatives, not
every problem will have these directly available due to a variety of reasons. Cou-
pled with an optimal control toolbox such as GPOPS− II, the user will no longer
need to worry about expressing complex derivative equations or the implemen-
tation details of their optimal control problem, allowing the focus to be shifted
towards solving more complex problems that demand the use of sophisticated
dynamic system models.
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A Command Window Outputs
A.1 method = 1
Shooting method with analytic derivatives (only select portions are shown).

Norm of First−order
Iter F−count f(x) Feasibility Steplength step optimality

0 102 2.000000e+00 1.389e−01 2.000e−02
1 204 4.022316e+00 6.260e−07 1.000e+00 2.021e+01 3.901e+00
2 306 4.021748e+00 9.875e−11 1.000e+00 1.426e−02 9.785e−03
3 408 4.020783e+00 5.349e−11 1.000e+00 6.950e−02 9.542e−03
4 510 4.016638e+00 6.871e−10 1.000e+00 3.247e−01 8.133e−03
5 612 4.005824e+00 7.582e−10 1.000e+00 1.294e+00 3.621e−03
6 714 4.002948e+00 2.699e−09 1.000e+00 9.924e−01 1.138e−03
7 816 4.002792e+00 6.548e−11 1.000e+00 4.401e−02 1.108e−03
8 918 4.002630e+00 1.004e−10 1.000e+00 3.917e−02 7.249e−04
9 1020 4.002628e+00 2.074e−11 1.000e+00 1.651e−02 1.946e−04
10 1122 4.002628e+00 6.841e−11 1.000e+00 9.352e−03 1.886e−04
11 1224 4.002627e+00 4.420e−11 1.000e+00 4.354e−03 1.836e−04
12 1326 4.002626e+00 3.196e−10 1.000e+00 1.247e−02 1.573e−04
13 1428 4.002624e+00 1.962e−10 1.000e+00 1.241e−02 1.132e−04
14 1530 4.002620e+00 1.128e−10 1.000e+00 1.661e−02 8.599e−05
15 1632 4.002619e+00 4.964e−10 1.000e+00 1.608e−02 4.178e−05
16 1734 4.002618e+00 7.280e−12 1.000e+00 1.024e−02 6.292e−06
17 1836 4.002618e+00 1.146e−11 1.000e+00 2.441e−03 1.630e−06
18 1938 4.002618e+00 1.555e−12 1.000e+00 2.876e−04 3.731e−07

Local minimum found that satisfies the constraints.

11http://www.mathworks.com/matlabcentral/fileexchange/authors/157997
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A.2 method = 2
Shooting method with a Simscaper model (only select portions are shown).

Norm of First−order
Iter F−count f(x) Feasibility Steplength step optimality

0 102 2.000000e+00 1.389e−01 2.000e−02
1 204 3.822289e+00 1.135e−06 1.000e+00 1.978e+01 4.472e+00
2 306 3.821157e+00 4.310e−07 1.000e+00 3.373e−02 2.039e−02
3 408 3.815691e+00 7.342e−06 1.000e+00 1.671e−01 1.937e−02
4 510 3.796440e+00 2.085e−09 1.000e+00 6.825e−01 1.519e−02
5 612 3.766875e+00 1.064e−05 1.000e+00 2.479e+00 8.630e−03
6 714 3.763901e+00 1.927e−09 1.000e+00 1.710e−01 8.187e−03
7 816 3.759692e+00 1.277e−09 1.000e+00 2.407e−01 6.266e−03
8 918 3.757821e+00 1.233e−09 1.000e+00 2.775e−01 5.804e−03
9 1020 3.757696e+00 1.100e−09 1.000e+00 5.530e−02 5.717e−03
10 1122 3.757368e+00 8.846e−10 1.000e+00 7.190e−02 5.680e−03
11 1224 3.756414e+00 1.193e−09 1.000e+00 2.637e−01 5.702e−03
12 1326 3.755500e+00 2.155e−09 1.000e+00 2.248e−01 5.116e−03
13 1428 3.754423e+00 6.132e−10 1.000e+00 3.102e−01 3.801e−03
14 1530 3.753618e+00 1.038e−06 1.000e+00 4.096e−01 2.015e−03
15 1632 3.753450e+00 1.187e−09 1.000e+00 1.282e−01 1.632e−03
16 1734 3.753290e+00 1.756e−07 1.000e+00 9.897e−02 1.869e−03
17 1836 3.753064e+00 1.616e−09 1.000e+00 8.002e−02 2.064e−03
18 1938 3.752627e+00 1.570e−09 1.000e+00 2.042e−01 1.656e−03
19 2040 3.752412e+00 2.576e−09 1.000e+00 1.163e−01 9.309e−04
20 2142 3.752350e+00 1.830e−07 1.000e+00 9.293e−02 8.962e−04
21 2244 3.752333e+00 1.435e−10 1.000e+00 4.548e−02 6.774e−04
22 2346 3.752318e+00 4.193e−10 1.000e+00 3.024e−02 6.711e−04
23 2448 3.752297e+00 1.424e−09 1.000e+00 1.291e−02 6.128e−04
24 2550 3.752260e+00 2.025e−10 1.000e+00 6.215e−02 3.991e−04
25 2652 3.752239e+00 5.026e−10 1.000e+00 7.208e−02 1.671e−04
26 2754 3.752236e+00 3.087e−10 1.000e+00 1.825e−02 1.195e−04
27 2856 3.752235e+00 8.116e−11 1.000e+00 1.099e−02 2.089e−04
28 2959 3.752235e+00 1.570e−11 1.000e+00 1.760e−03 1.277e−04
29 3061 3.752235e+00 9.367e−12 1.000e+00 2.584e−03 1.233e−04
30 3163 3.752234e+00 1.130e−10 1.000e+00 1.009e−02 8.765e−05

Norm of First−order
Iter F−count f(x) Feasibility Steplength step optimality
31 3265 3.752233e+00 6.497e−11 1.000e+00 8.868e−03 2.354e−04
32 3368 3.752232e+00 1.406e−10 1.000e+00 1.758e−02 1.032e−04
33 3470 3.752232e+00 3.953e−11 1.000e+00 8.640e−03 3.410e−04
34 3573 3.752232e+00 7.088e−12 1.000e+00 3.086e−03 6.514e−05
35 3675 3.752232e+00 6.678e−12 1.000e+00 1.927e−03 6.675e−05
36 3777 3.752232e+00 2.395e−12 1.000e+00 9.156e−04 6.734e−05
37 3879 3.752232e+00 2.409e−12 1.000e+00 8.536e−04 6.681e−05
38 3981 3.752232e+00 5.714e−12 1.000e+00 1.679e−03 6.874e−04
39 4012 3.752232e+00 5.714e−12 1.578e−05 3.191e−06 6.874e−04

Local minimum possible. Constraints satisfied.
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A.3 method = 3,4
Direct transcription with trapezoidal rule (only select portions are shown). Both
analytic and Simscaper derivatives have the same output.

Norm of First−order
Iter F−count f(x) Feasibility Steplength step optimality

0 304 2.000000e+00 2.000e+00 2.000e−02
1 608 4.022445e+00 3.610e−11 1.000e+00 2.291e+01 3.932e+00
2 912 4.022250e+00 7.180e−13 1.000e+00 1.397e−02 9.659e−03
3 1216 4.021296e+00 5.454e−12 1.000e+00 6.951e−02 9.410e−03
4 1520 4.017008e+00 1.525e−11 1.000e+00 3.386e−01 8.199e−03
5 1824 4.005247e+00 1.610e−10 1.000e+00 1.474e+00 2.926e−03
6 2128 4.003568e+00 7.349e−11 1.000e+00 8.056e−01 2.619e−04
7 2432 4.003567e+00 4.930e−14 1.000e+00 9.386e−04 2.594e−04
8 2736 4.003563e+00 1.732e−13 1.000e+00 4.484e−03 2.466e−04
9 3040 4.003547e+00 1.247e−12 1.000e+00 2.131e−02 1.852e−04
10 3344 4.003527e+00 3.463e−12 1.000e+00 6.444e−02 1.927e−07

Local minimum found that satisfies the constraints.

A.4 method = 5,6
Pseudospectral method (only select portions are shown). Both analytic and
Simscaper derivatives have the same output.

|−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Mesh iteration 1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|

Nonlinear constraints 10 Linear constraints 1
Nonlinear variables 17 Linear variables 0
Jacobian variables 17 Objective variables 7
Total constraints 11 Total variables 17

Major Minors Step nCon Feasible Optimal MeritFunction nS Penalty
0 8 1 9.5E−01 1.0E+00 1.4073667E+05 1 r i
1 9 2.9E−01 2 4.7E−01 1.1E+00 9.0261036E+04 1 n rli
2 1 3.5E−01 4 2.4E−01 8.7E−01 5.6285668E+04 1 n rli
3 2 1.0E+00 5 1.4E−01 1.9E−01 2.6076911E+02 1 s
4 1 1.0E+00 6 1.0E−03 6.0E−03 4.2402145E+00 1
5 2 1.0E+00 7 4.0E−06 7.1E−03 4.1701570E+00 1
6 1 1.0E+00 8 7.2E−05 6.6E−03 4.1430905E+00 1
7 1 1.0E+00 9 1.2E−02 2.7E−03 4.0105429E+00 1
8 1 1.0E+00 10 2.1E−03 1.4E−04 3.9981039E+00 1
9 1 1.0E+00 11 5.1E−06 2.8E−06 3.9977648E+00 1
10 1 1.0E+00 12 (4.2E−09)(9.1E−07) 3.9977647E+00 1

SNOPTA EXIT 0 −− finished successfully
SNOPTA INFO 1 −− optimality conditions satisfied

−−− Analysis of Mesh in Phase 1 −−−

Maximum Relative Error on Current Mesh in Phase 1 = 0.0004596
Mesh Error Tolerance is NOT satisfied in Phase 1

−−− Modification of Mesh in Phase 1 −−−
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Dividing Mesh Interval 1 Into 4 Mesh Intervals

|−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Mesh iteration 2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|

Nonlinear constraints 26 Linear constraints 1
Nonlinear variables 41 Linear variables 0
Jacobian variables 41 Objective variables 7
Total constraints 27 Total variables 41

Major Minors Step nCon Feasible Optimal MeritFunction nS Penalty
0 19 1 1.9E−02 5.4E−03 3.9977647E+00 7 r
1 1 1.0E+00 2 5.9E−03 9.0E−03 4.0042235E+00 7 5.8E+00 n r
2 2 1.0E+00 3 (1.4E−07) 8.2E−04 4.0041105E+00 6 1.0E+01 s
3 2 2.9E−02 6 1.4E−04 1.2E−03 4.0030091E+00 5 6.5E+00
4 3 1.2E−01 8 2.9E−04 7.8E−04 4.0019035E+00 5 6.5E+00
5 6 1.0E−01 10 8.2E−04 2.8E−04 4.0001191E+00 6 6.5E+00
6 2 8.0E−02 12 1.0E−03 3.1E−04 3.9991627E+00 5 6.5E+00
7 2 8.7E−02 14 1.0E−03 2.2E−04 3.9986885E+00 6 6.5E+00
8 2 7.9E−02 16 9.7E−04 1.1E−04 3.9983219E+00 7 6.5E+00
9 1 6.7E−02 18 9.3E−04 1.2E−04 3.9981921E+00 7 6.5E+00
10 1 1.0E+00 19 2.4E−05 4.9E−05 3.9973743E+00 7 6.5E+00
11 1 1.0E+00 20 1.6E−06 (1.0E−06) 3.9973639E+00 7 6.5E+00
12 1 1.0E+00 21 (1.4E−09)(1.6E−07) 3.9973639E+00 7 6.5E+00 R

SNOPTA EXIT 0 −− finished successfully
SNOPTA INFO 1 −− optimality conditions satisfied

−−− Analysis of Mesh in Phase 1 −−−

Maximum Relative Error on Current Mesh in Phase 1 = 0.00029249
Mesh Error Tolerance is NOT satisfied in Phase 1

−−− Modification of Mesh in Phase 1 −−−

Dividing Mesh Interval 2 Into 4 Mesh Intervals
Dividing Mesh Interval 3 Into 4 Mesh Intervals

|−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Mesh iteration 3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|

Nonlinear constraints 62 Linear constraints 1
Nonlinear variables 95 Linear variables 0
Jacobian variables 95 Objective variables 7
Total constraints 63 Total variables 95

Major Minors Step nCon Feasible Optimal MeritFunction nS Penalty
0 31 1 1.7E−03 5.4E−04 3.9973639E+00 25 r
1 1 1.0E+00 2 1.8E−04 3.3E−04 4.0029786E+00 25 1.2E+02 n r
2 2 1.0E+00 3 (4.4E−08) 4.7E−04 4.0029258E+00 24 2.0E+01 s
3 2 1.0E+00 4 4.4E−04 8.8E−05 4.0002089E+00 25 1.9E+01
4 1 1.0E+00 5 4.0E−05 1.2E−04 4.0001110E+00 25 1.9E+01
5 1 1.0E+00 6 9.0E−06 3.1E−05 4.0000063E+00 25 1.9E+01
6 1 1.0E+00 7 7.6E−06 2.7E−05 3.9999461E+00 25 1.9E+01
7 1 1.0E+00 8 1.8E−06 1.2E−05 3.9999349E+00 25 1.9E+01
8 1 1.0E+00 9 (1.7E−07) 2.1E−06 3.9999340E+00 25 1.9E+01
9 1 1.0E+00 10 (5.9E−09)(6.8E−07) 3.9999339E+00 25 1.9E+01

SNOPTA EXIT 0 −− finished successfully
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SNOPTA INFO 1 −− optimality conditions satisfied

−−− Analysis of Mesh in Phase 1 −−−

Maximum Relative Error on Current Mesh in Phase 1 = 4.5676e−06
Mesh Error Tolerance is NOT satisfied in Phase 1

−−− Modification of Mesh in Phase 1 −−−

Dividing Mesh Interval 3 Into 2 Mesh Intervals
Dividing Mesh Interval 8 Into 2 Mesh Intervals

|−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Mesh iteration 4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|

Nonlinear constraints 74 Linear constraints 1
Nonlinear variables 113 Linear variables 0
Jacobian variables 113 Objective variables 7
Total constraints 75 Total variables 113

Major Minors Step nCon Feasible Optimal MeritFunction nS Penalty
0 29 1 7.0E−05 6.9E−05 3.9999339E+00 23 r
1 1 1.0E+00 2 2.2E−06 5.2E−05 4.0000439E+00 23 1.7E+03 n r
2 6 1.0E+00 3 (4.4E−10) 5.2E−05 4.0000433E+00 24 6.8E+01 s
3 6 1.0E+00 4 1.2E−05 1.9E−05 3.9999952E+00 29 2.2E+01
4 2 1.0E+00 5 1.5E−06 1.8E−05 3.9999898E+00 30 2.2E+01
5 2 1.0E+00 6 (4.6E−07) 1.0E−05 3.9999860E+00 29 2.2E+01
6 2 1.0E+00 7 (3.6E−07) 6.4E−06 3.9999821E+00 30 2.2E+01
7 1 1.0E+00 8 (2.1E−07) 2.5E−06 3.9999807E+00 30 2.2E+01
8 4 1.0E+00 9 (1.8E−08)(1.8E−06) 3.9999805E+00 30 2.2E+01

SNOPTA EXIT 0 −− finished successfully
SNOPTA INFO 1 −− optimality conditions satisfied

−−− Analysis of Mesh in Phase 1 −−−

Maximum Relative Error on Current Mesh in Phase 1 = 5.5764e−07
Mesh Error Tolerance IS satisfied in Phase 1
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