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Rather than designing engineering systems from the ground up, engineers often redesign strategic portions
of existing systems to accommodate emerging needs. In the redesign of mechatronic systems, engineers
typically seek to meet the requirements of a new application via control redesign only, but this is often
insufficient and physical system (plant) design changes must be explored. Here, an integrated approach
is presented for the redesign of mechatronic systems involving partial plant redesign that avoids costly
complete redesign. Candidate plant modifications are identified using sensitivity analysis, and then an
optimization problem is solved that minimizes redesign cost while satisfying system requirements. This
formal methodology for Plant-Limited Co-Design (PLCD) is demonstrated using a robotic manipulator
design problem. The PLCD result costs significantly less than the full redesign, and parametric studies
illustrate the tradeoff between redesign cost and performance. It is shown that the proposed sensitivity
analysis results in the lowest cost limited redesign.
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1. Introduction

The work presented here is part of a broader effort to enhance the ability to redesign or reconfigure
engineering systems, which is becoming increasingly important as the scale and complexity of
engineering systems increases (Siddiqi and de Weck 2008; de Weck et al. 2011). Completely
redesigning and reimplementing large-scale engineering systems as needs evolve is impractical,
especially in the case of systems-of-systems, such as transportation or energy systems (DeLauren-
tis 2005). Engineers must learn to manage the persistence of legacy system components that are
too costly to replace, while strategically modifying other system elements to achieve the desired
functionality and performance in the most cost effective way (Harper and Thurston 2008). Formal
methods for strategic limited redesign are thus emerging as a critical segment of engineering
system design; an especially important aspect of these methods involves the identification of can-
didate system modifications. The focus of this article is on one specific type of strategic redesign:
modification of mechatronic systems to meet new needs at minimal plant modification cost.
Engineering systems often incorporate active control systems to govern dynamic behaviour. The
design of a physical system and the design of its control system are interdependent activities (Fathy
2003). Conventional sequential design approaches (Li et al. 2001; Friedland 1996; Roos 2007)
usually produce suboptimal results (Reyer ez al. 2001). A class of design methodologies, known as
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co-design, accounts for physical system and control system design coupling and produces system-
optimal results. Existing co-design strategies are intended for cases where the physical system
does not already exist and the system designer has complete freedom to specify both physical and
control system design (i.e., clean-sheet design). In practice, however, engineers are often faced
with design problems where the physical system (plant) has already been manufactured; in this case
the design objective is either to design a control system that enables the plant to be used for a new
purpose, or to improve performance for its original purpose. Often control design changes alone
are insufficient to meet performance requirements for the new system application, i.e., the desired
performance cannot be achieved due to fundamental physical limitations that are independent of
control design. For example, kinematic restrictions, excessive structural compliance, mismatched
natural frequencies, or inadequate actuators may prevent a system from performing a task in an
acceptable manner even after extensive control design studies.

Open-loop optimal control methods that are not restricted by control structure, such as direct
transcription (Biegler 2010) or dynamic programming (Denardo 1982), may be used to confirm
whether any input control trajectory is capable of satisfying the new task requirements via control
design alone. If no feasible trajectories exist, limited plant modifications should be explored to
identify efficient plant design changes that enable requirement satisfaction. Modifying already
manufactured physical systems is costly, so minimizing the number and complexity of these
modifications is essential. This can be addressed in a systematic manner through Plant-Limited Co-
Design (PLCD), which is a new design methodology that produces system-optimal designs with
minimum-cost plant modifications while satisfying performance requirements for new system
applications.

Many elements of system redesign have been investigated, including strategies for evaluation
of the original system and deciding whether redesign should be performed, as well as methods for
determining appropriate system modifications. System redesign has been explored across several
application domains, such as manufacturing systems (Serrano et al. 2008), dynamic structural
systems (Takewaki 1997), and, most notably, control system design (Ioannou and Kokotovic 1984;
Looze et al. 1985; Taranto et al. 1995; Khalil 1996; Boyle 2003), although none has involved
co-design.

Some cite failure (Looze et al. 1985), impending failure (Vachtsevanos et al. 2007), or poor
performance (Liker 2003) as criteria for choosing to redesign a system, whereas the emphasis
of the PLCD method presented here is on modifying systems that are being re-purposed for
new applications. PLCD can help support the continued utilization of large-scale engineering
systems that often outlive their originally intended function due to dynamically changing needs
(Harper and Thurston 2008). System redesign has also been studied as part of the iterative product
development process (Mistree et al. 1981; Dixon et al. 1987; Boyle 2003); this type of redesign
is different from PLCD because the system has not already been manufactured.

Once it is recognized that a system must be redesigned, the first step is to identify appropriate
candidate design changes. This may be accomplished through domain-specific rules or heuristics
(Finger and Dixon 1989; Boyle 2003), optimization-based methods (Mistree et al. 1981; Kim et al.
2004), or knowledge-based systems (Boyle 2003). Prognostics and health management studies
have also been used in cases where predicted system failure must be prevented through system
enhancements (Vachtsevanos et al. 2007). In this article a formal sensitivity-based approach
coupled with optimal co-design is proposed for determining least-cost plant design modifications
that satisfy requirements for a new system application.

The following sections outline and demonstrate a proposed methodology for PLCD. The spe-
cial challenges of developing models suitable for exploring physical system design changes is
discussed, and a sensitivity analysis approach is introduced that helps limit the scope of the plant
design problem and the associated system model. A two-link robotic manipulator design prob-
lem is then used to demonstrate the application of PLCD to mechatronic systems. An baseline
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manipulator design is obtained using co-design that minimizes energy consumption for a specific
pick-and-place task. This initial system design capitalizes on passive system dynamics to improve
energy efficiency. Next, a second task is introduced that cannot be performed using the baseline
design without plant modifications. The manipulator is redesigned using PLCD, and it is shown
that a limited redesign can produce an energy efficient design at significantly reduced cost com-
pared to full system redesign. PLCD is demonstrated to be an effective approach for solving an
important class of mechatronic design problems that have not yet been studied in a formal way.

2. Plant-Limited Co-Design (PLCD)

PLCD is a new mechatronic system design methodology where limitations on plant design mod-
ifications are accounted for explicitly. PLCD problems arise when engineers seek to re-purpose
existing systems for new applications. For example, an existing directional antenna designed
originally for maintaining a line-of-sight radio connection between a ship and aircraft might be
modified to maintain a connection between a land vehicle and aircraft. The vehicle dynamics are
significantly different between these two situations, and the original system may not meet per-
formance requirements for the new system application. Suppose, after exhaustive control system
analysis, engineers conclude that system performance requirements for the new application cannot
be met through control design changes alone. Designing a new physical system from scratch would
be a familiar, yet expensive, solution to this problem. An alternative strategy involves exploring
limited changes to the existing plant design to determine if system performance requirements can
be met at a reasonable cost. This strategy requires an integrated design approach where limited
plant redesign is considered simultaneously with control system design. Otherwise, it would not
be possible to identify which elements of a physical system could be modified to meet the new
requirements at minimum cost.

This article presents one possible method for solving the PLCD problem based on optimization.
Itis a multidisciplinary design optimization approach with two disciplines: physical system design
and control design (Allison and Nazari 2010; Allison and Han 2011). Other approaches are possible
and opportunities for future work in this emerging area of mechatronic system design are identified
in later sections.

2.1. PLCD solution process

Here, a formal optimization-based approach is proposed for solving PLCD problems. The
following is an outline of the solution process.

Step 1. Identify candidate plant modifications.

Step 2. Develop a system model with independent variables in the selected plant and control
design spaces.

Step 3. Formulate and solve the PLCD optimization problem.

Step 4. Verify the result and repeat if further improvement can be made via alternative plant
modifications.

In the first step the system is analysed to determine which aspects of the plant should be
modified. Here a sensitivity-based approach is proposed for identifying plant modifications that
are likely to have significant impact on system performance. Once this is done, a system model
can be developed that provides sufficient flexibility for exploring the selected candidate plant and
control design modifications. With a complete system model established, the PLCD optimization
problem may be formulated and solved. This article presents two approaches for solving the PLCD
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optimization problem. In the first, plant modification cost is minimized while meeting system
performance constraints. In the second approach, the tradeoff between plant modification expense
and system performance improvement is explored using a multi-objective formulation. After
solving the PLCD problem, the result may be examined to determine whether further improvement
can be achieved by altering the set of candidate plant modifications. If this is the case, the process
can be repeated. The following sections describe each of these steps in detail.

2.2. Plant modification analysis

In solving a PLCD problem, engineers may consider several different types of plant design
changes, such as actuator choice, component replacement or modification, component removal
or relocation, addition of new components, or other topological changes. These modifications
can have a significant effect on dynamic properties. A primary objective in solving PLCD prob-
lems is to identify efficient plant modifications that enable requirement satisfaction with minimal
expense and effort. Narrowing down the set of candidate plant changes eases both modelling and
optimization challenges.

Here, a first-order approach is presented for analysing the link between plant characteristics
and system performance. This analysis may be used to select a set of candidate plant changes that
form the basis of the system redesign model and PLCD optimization problem. This sensitivity-
based approach applies only to candidate plant changes that are continuous in nature, such as
continuous geometric changes to existing components. Design objectives and constraints must
be differentiable with respect to candidate plant modifications. Future work will address discrete
modifications, such as the addition or reconfiguration of plant components, using promising
techniques such as topological derivatives (Novotny et al. 2005; Guzina and Chikichev 2007;
Amstutz, Takahashi, and Vexler 2008; Mréz and Bojczuk 2012) or generative algorithms (Shea,
Aish, and Gourtovaia 2005).

Sensitivity analysis may be performed using a simplified system model, such as a model suitable
for control system design. A model that incorporates independent plant design variables, such as
geometric dimensions, is not needed at this stage. Rather, the system model may be expressed in
terms of parameters that quantify plant characteristics (denoted p here), such as inertia values or
damping rates, which is typical of models developed for control design. A simplified model may
have been used for control system design when the original system was developed, and may be
available at this stage.

Consider the set of system performance requirements for the new task posed in negative null
form: g.(p) < 0, and a subset of these requirements that the original system was unable to meet
or were found to be active constraints: g.(p) < 0. The sensitivity of g.(p) with respect to plant
characteristics p is used to rank and select candidate plant modifications. The rationale here is to
identify elements of plant design that can influence system performance as efficiently as possible.

The first sensitivity approach involves the derivatives of the violated requirements for the new
system application with respect to plant parameters, i.e.

98(p)
apj

. =12 n, j=12,...n, (1)

where n, is the number of violated requirements and »,, is the number of model parameters. These
terms form the model parameter Jacobian J,, which can be used to identify the most influential
parameters. A large absolute value of 9g,;(p)/dp; indicates that requirement i is influenced signif-
icantly by small changes in p;. After a set of influential model parameters p is identified based on
J,, a corresponding set of candidate plant changes X, that influence p must be established. Note
that X, is a subset of variables selected from the full set of plant design variables x,, corresponding
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to full system design. The link between p and X, may be difficult to establish, requiring change
propagation analysis (Giffin e al. 2009). Once X, is identified, the system model can then be
expanded (described in the next step). Model expansion often requires a significant investment,
so narrowing down the set of candidate plant changes here is a crucial task.

A more sophisticated analysis for selecting X, involves the sensitivity of violated requirements
with respect to cost:

92:(p) (3C(P\ ™' 98y
g_@( (p)) _ B8 ®) o =12, )

Bpj BpJ Bcj

where C(p) approximates the cost of changing model parameters, and c; represents the cost of
changing model parameter p;. This cost model could be based on correlation between cost and
these parameters on similar existing systems (Collopy and Eames 2001). The 9g,;(p)/dc; terms
form the cost Jacobian J., which can be used to assess more accurately which plant modifications
could produce the desired performance improvements most economically.

While this step is presented as a component of the larger PLCD process, it may be used
alone in conjunction with conventional design methods. For example, once X, is identified using
sensitivity analysis, engineers can proceed using conventional design methods to modify the
plant and then the control system in a sequential manner. In some cases this approach may
be sufficient, and the relatively small modelling and analysis investment is appealing. Mattila
and Virvalo (2000), for example, applied an informal version of PLCD Step 1 by identifying
critical elements of a hydraulic manipulator and redesigning them using conventional techniques
to achieve significant energy savings. Observe, however, that this sequential approach is not a co-
design method; potential synergy between plant and control design cannot be exploited and the
result will not be system-optimal. If this simplified approach is not successful, the full co-design
process described above should be used. In addition, if the full co-design process fails to identify
anew design that satisfies requirements based on a particular Xy, the criteria for selecting p should
be relaxed to increase the dimension of Xp.

2.3. System model development

Solving the PLCD optimization problem described in Step 3 requires a system model that has
as independent variables the candidate plant modifications X, identified in Step 1. At this stage,
available models are often limited to those that are appropriate for control design, or formal system
descriptions using languages such as SysML (Friedenthal ef al. 2008). While these models may
indeed be useful for supporting candidate plant design variable selection, they are insufficient for
supporting the solution of the PLCD optimization problem because they do not provide quantita-
tive performance predictions for modified physical systems. Models that do predict accurately the
results of physical system design changes are challenging to develop, often requiring significant
resource investment. Developing a system model that accommodates all possible plant changes
is impractical and unnecessary for realistic PLCD problems since only part of the plant design is
being changed; reducing the dimension of X, is important both for curbing model development
expense and easing optimization solution difficulty.

One possible modelling approach is to augment the existing control design oriented model used
in Step 1 with specialized modelling tools to predict model parameter values. The objective is to
form a model p = a(x;), where a(Xp) is an analysis function that computes model parameters as
a function of independent plant design variables using computer aided engineering tools (such as
finite element analysis). This unidirectional system model structure is described in more detail by
Allison and Nazari (2010) and Frischknecht et al. (2010). Bidirectional coupling between plant
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and control design may still be captured through plant design constraint dependence on control
design variables X.

2.4. Plant modification minimization

Once candidate plant modifications X, have been identified and a suitably flexible system model
has been developed, an optimization-based approach may be used to identify the minimum plant
modification required to meet system requirements. Consider the following PLCD optimization
problem:

min ¢ (x)
x=[x} x!I "
s.t. gp(x) <0 3)
g(x) <0,

where ¢ (x) is a measure of deviation from the original plant design, g,(x) are plant design
constraints, and g, (x) are system performance requirements formulated as inequality constraints.
Both sets of constraints are assumed to be given here. Note that g,.(x) represents the full set of
system requirements, not just those used in Step 1 for identifying candidate plant modifications.
While omitted from this formulation, control design constraints such as stability may be included
here. The optimization variable X, parametrizes the candidate plant modifications, and X, are the
control design variables. The solution to this problem is a system design that meets performance
requirements for the new task while requiring minimal modifications to the physical system design.
Note that multiple new tasks could be considered in PLCD by combining requirements for each
task into g.(p) and performing a separate simulation for each task, or by using a multi-objective
formulation to investigate performance tradeoffs among tasks.

The choice of metric ¢ (x) has significant impact on the resulting design solution. A weighted
norm on the difference between the original design Xy and the new design x;, (i.e., ¢ (x) = [[w o
(Xo — Xp)||) might be used as a simplified metric. The variable weights w help account for varying
difficulty in different plant modifications as well as the magnitude of the components of X;,. Ideally,
a more sophisticated cost function that estimates the expense of a given plant modification should
be used. The robotic manipulator case study presented in this article uses change in mass to
approximate plant modification cost:

) =Y mi(x) — i,
i=1

where 7, is the number of plant components being modified, m;(X) is the mass of component i
with modification defined by x, and 7; is the mass of component i in the baseline design. This
simplified metric is used to estimate the cost of limited plant redesign to the manufacturer. A more
complete study would include full lifecycle cost, including use (such as energy and maintenance
costs) and end-of-life costs.

2.5. Multi-objective optimization

If the performance requirements are flexible, the engineer may wish to explore the tradeoff between
performance and plant redesign cost. This tradeoff information is especially useful if the design
objective is to improve system performance at a reasonable cost, and can be obtained via solution
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Figure 1. (a) Two-link planar manipulator. (b) Section view of link i. (c) Task A initial and final conditions.

of a multi-objective optimization problem:

min {0, ¥ (gx))
x=[%p.xc] “
s.t. gp(x) 0.

Here, the scalar cost metric described above ¢ (x) is minimized simultaneously with v (g, (X)),
the maximum normalized performance violation. The solution to this problem is a Pareto set that
provides insight into the tradeoff between cost and requirement satisfaction, which is useful in
determining whether some relaxation of performance requirements is worth the associated cost
savings.

The Pareto set also illustrates the predicted minimum performance degradation if no plant
design changes are made, i.e., ||Xo — Xp|| = 0. This is useful quantitative evidence an engineer
can use to support the case for limited plant design changes. If the cost of not meeting requirements
exceeds the cost of plant changes required to satisfy requirements, then proceeding with a limited
plant redesign is justified.

3. PLCD of a robotic manipulator

Robotic manipulators are used extensively in manufacturing, and manipulator energy efficiency
and dynamic performance are important economic and environmental considerations (Field and
Stepanenko 1996; Li et al. 2001; Sato et al. 2007). The PLCD example presented here involves
a two-link planar manipulator that is designed to perform a specific pick-and-place task (Task A)
with minimal energy consumption while complying with joint actuator torque and link deflection
constraints. This baseline design is obtained using co-design, and represents the existing mecha-
tronic system an engineer seeks to modify to perform a new task (Task B). It is shown that the
baseline design is incapable of meeting Task B requirements through control design changes alone.
Sensitivity analysis is used to identify a limited set of plant modifications, and then the PLCD
problem is solved to identify a limited plant redesign that can perform Task B while complying
with requirements. PLCD is also compared to full system redesign.

Figure 1(a) illustrates the manipulator configuration. Position is specified by the two joint angles
6, and 6, (in the position shown, 6, < 0). Each link has a constant annular cross section with
radius r; and wall thickness #; (Figure 1(b)) and is constructed of 7075 T6 aluminium. Figure 1(c)
illustrates Task A initial and final conditions. The manipulator is to lift a 20 kg payload from the
initial position p, with initial velocity vo, and 7+ = 2.0's later place the payload at p, with final
velocity vy.
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The original system is designed to perform Task A with minimal energy based on the following
co-design formulation:

min  E(x)
X=[Xp.,Xc]
s.t. |Tmax,i(x)| = Tallow> i= 1»2 (5)

(Si(xp) = 83110W7 i = 1’ 2’

where E(x) is the total mechanical energy consumed to perform the assigned task, Tpax:(X) is
the maximum joint i torque, Taow is the allowable torque (limited by joint actuators), 6;(xp)
is the maximum link deflection for a given nominal torque, and d,0w is the upper deflection
bound. Here, the actuator design is assumed to be fixed, resulting in a torque bound of T,y =
210 Nm. The full plant design vector here includes the two link lengths and the link section radii:
Xp = [El, £2, r, VQ]T.

The desired (quintic) trajectory for the joint angles qq4(f) = [0:(¢), 0,()]" is calculated based
on the initial and final positions and velocities given in Figure 1(c), as well as the position p; and
velocity v; of an intermediate point along the path between p, and p;. A feedback linearization
approach with proportional and derivative control (Spong, Hutchinson, and Vidyasagar 2005)
was used to track qq (). Joint torque trajectories and energy consumption computed using inverse
dynamics agreed with feedback linearization, allowing the omission of tracking control design
variables and simplification of the problem formulation. Using inverse dynamics instead of for-
ward simulation results in a reduced set of control design variables, which includes only the
intermediate position and velocity values required to define the desired trajectory:

Xe = [pr.pr.vin vl

s

i.e., the control optimization portion of the system design problem has been reduced to finding
the minimum energy trajectory, parameterized by the intermediate trajectory point X,.
The following nonlinear differential equation was used to model manipulator dynamics:

M(q,xp)q + C(q,q,x,)q + g(q,Xp) =T, (6)

where M(q, Xp) is the inertia matrix, C(q, q,Xp) computes the centrifugal and Coriolis terms,
and g(q,x;) is the gravity vector. Definition of these terms for the two link manipulator can
be found in Spong, Hutchinson, and Vidyasagar (2005). Note that each of these terms depend
on both joint position and plant design. The joint torque vector is T = [}, 72]". In this model
joint motor mass, motor rotational inertia and electrical losses have been neglected. Energy is
calculated by integrating the mechanical power at each joint, but no energy recapture is counted
(i.e., no regenerative braking). Complete details of the model may be found in the supplementary
MaTLAB® code for this article (Allison 2012b).

The deflection constraint can be shown to be active using monotonicity analysis (Papalambros
and Wilde 2000), and radius values may be eliminated from x;, by substitution of the active con-
straints (simplifying the plant design problem). The deflection constraint is satisfied implicitly,
and the reduced-dimension design vector is x, = [£, £,]7. More specifically, given ¢;, the mini-
mum value of r; that satisfies the deflection constraint can be calculated. Here, it is assumed that
the nominal torques are 7, = [140, 8017 Nm, 8110w = 4 m, link wall thicknesses are f; = 3 mm
and t, = 2 mm, the elastic modulus is £ = 71.7 GPa, and material density is p = 2810 kg/m3 to
calculate radius values:

2‘L'm'Ei2 t;

= — 4+ —. 7
37 EtiSatiow * 2 @

ri
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Figure 2. Nominal plant design results: (a) payload trajectory; (b) joint 1 and (c) joint 2 torque—speed trajectories.

3.1. Task A co-design

The solution of the co-design problem given in Problem (5) for Task A is presented in this section,
and the role of passive dynamics in reducing energy consumption is discussed. The resulting
design is used as a baseline system design that represents the existing system to be modified via
PLCD. For comparison and to demonstrate the value of co-design, the performance of a nominal
plant design (x, = [0.6,0.6]" m) that represents a design solution obtained through conventional
means (i.e., a sequential approach where plant design obtained via expert engineering intuition
followed by control optimization®) will first be considered. The minimum energy trajectory for
the nominal design is x, = [0.183, —0.0836,0.0146, 0.142]7, which results in the payload path
illustrated in Figure 2(a). Figures 2(b) and 2(c) illustrate the torque—speed trajectories for each of
the joints; the circle indicates the starting point at the initial time #;.

Both joint actuators stay well within the bound 7,0 = 210 Nm. The payload trajectory follows
a ‘falling’ type motion, exploiting to some degree the passive dynamics of the baseline plant design
to perform Task A using only 21.3J of energy. The torque at joint 1 remains near zero for much
of the simulation; joint 2 is more active.

Understanding and harnessing the intrinsic dynamics of a physical system (Pitti and Lungarella
2006; Rieffel et al. 2010) can help reduce control forces and energy inputs. Rather than using
joint control to force the manipulator to follow a specific path, it is allowed to follow the passive
trajectory as much as possible, exerting relatively small control torques to guide the payload into
the right position at the right time. Taking this idea to the extreme, McGeer (1990) demonstrated
a passive walking device that required no active input—only gravitational potential energy—to
maintain steady-state walking. Collins et al. (2005) used simple power sources to replace gravity
for passive walkers, enabling them to walk on flat ground or inclines with energy efficiency
magnitudes better than conventional robotic walkers. Williamson (2003) applied this principle to
a variety of other robotic systems, explaining that using passive dynamics instead of ignoring or
canceling them can be particularly beneficial for specialized or repetitive tasks.

Ahmadi and Buehler (1999) classified the use of passive dynamics as a biomimetic principle that
can be used to reduce energy consumption in dynamic systems. There is one important distinction
between previous studies in passive dynamics and biological systems; the former fixes physical
system design and addresses only control design, whereas physical and control system properties
co-evolve in biological systems (Chiel and Beer 1997; Valero-Cuevas 2009). In this article robotic
design is taken a step closer to the elegance of biological systems by designing physical and control
systems together in a way that exploits synergy between these design domains. The nominal design

T Optimization problems throughout this article were solved using a hybrid approach where a gradient-based method
(SNOPT [Gill et al. 1997]) is applied after a gradient-free method (pattern search with a global search method [Audet and
Dennis 2006]). The first step provides a good starting point for SNOPT and improves the probability of finding a global
optimum.
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Figure 3. Task A system-optimal design: (a) payload trajectory; (b) joint 1 torque-speed trajectory and (c) joint 2
torque—speed trajectory.

represented in Figure 2 is efficient, but can be improved by tailoring the physical system to the
requirements of Task A. This improvement is realized by solving the simultaneous co-design
problem given in Problem (5). The resulting trajectories are system-optimal, and are illustrated
in Figure 3.

The payload takes a fundamentally different path with the system-optimal design; joint torques
remain close to zero for much of the simulation. The total energy consumption is a remarkably
low 0.0272 J. The optimal design is

xp = [1.77, 1.63]T,  x. =[0.113,0.121,0.0503, —0.437]".

The links more than doubled in length, a counterintuitive result. The system mass is higher, but
energy consumption decreased. In this case the centre of mass location and kinematics were ideal
for Task A; customized passive dynamics enabled task completion with very little control effort.
While 7, is at its bound at ¢y, it is much smaller afterwards. Also note that, for Task A, the link
length ratio is again near unity so that p, is reachable.

It should be emphasized that because Task A does not include a return of the end effector to
the start position, the energy consumption reported here is not indicative of continuous repeated
operation. Co-design is still expected, however, to enable identification of the minimum-energy
system design for repeated operation, likely exploiting the change in mass and inertia properties
from releasing the payload to make the return path more energetically favourable.

A parametric study was performed to explore the influence of task time # on system perfor-
mance. Holding the plant design fixed at the system optimal value of x, = [1.77, 1.63]", task time
was varied from 0.3 to 2.0 s and the optimal trajectory was computed for each task time (Figures 4
and 5).

Figure 4(a) reveals the dependence of energy consumption on task time. As expected, energy
consumption and # are inversely related. Energy consumption is nearly constant between tr = 1.0
and 2.0 s, indicating that passive dynamics dominate and very little control intervention is required
in this range. Below this range more energy is required because the manipulator must move faster
than passive dynamics allow. Figures 4(b) and 4(c) illustrate the joint torque trajectories for a
range of task time values. Trajectories for #; < 0.6s are omitted owing to large magnitudes that
would obscure the other trajectories.

Figure 5(a) illustrates the payload trajectories for a range of task times. Trajectories undergo a
fundamental change in shape as task time dips below one second. Above this value the payload
is first lifted in a way that exploits passive dynamics. Below one second the passive dynamics are
too slow, and the payload takes a more direct (forced) path. The torque—speed curves for #; = 0.6
and ty = 2.0's, shown in Figures 5(b) and 5(c), illustrate that longer task times (which are more
aligned with passive dynamics) result in torque trajectories closer to zero for a greater portion
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Figure 4. Task A parametric study: (a) energy consumption as a function of task time; (b) joint 1 and (c) joint 2 actuator
torques for various task times.
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Figure 5. TaskA parametric study: (a) payload trajectory as a function of task time; (b) joint 1 and (c) joint 2 torque—speed
trajectories for # = 0.6 and ty = 2.0s.

of the task. Observing proximity to zero torque is one way to identify whether passive dynamics
dominate system behaviour.

Keep in mind that in this parametric study the plant design was held fixed. Except for t; = 2.0,
this plant design is not system-optimal. Had co-design been performed for each #; value, the energy
consumption and torque values would be lower as the passive dynamics would be better matched
to the task. There is still a lower task time limit for physical systems below which passive dynamics
cannot be used; below this limit active control must dominate since passive dynamics are incapable
of sufficiently fast motion.

3.2. Task B co-design

Here the performance of the Task A system-optimal plant design for a new task (Task B) will be
explored, and it will be verified that this plant design is incapable of meeting torque requirements
through control system (trajectory) design changes alone. For comparison, a new system design
for Task B (i.e., clean-sheet design for the new task) will be presented for comparison to PLCD
results. This approach reveals the best possible performance for Task B, but this complete system
redesign comes at a cost that may be prohibitive. The next step, described in the following
subsection, involves co-design with limitations on plant redesign as a strategy to reduce system
modification cost.

The new task (Task B) involves significant vertical displacement, and is defined by the following
boundary conditions:

Po=1[05,121"m, vy =[-0.1,0]"m/s,
p; = (04, 20"m, v;=[-0.1,01"m/s.
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If the manipulator links were massless, the energy required to perform Task B could not be less
than m,gh = (20kg)(9.81 m/ s?)(0.8 m) = 157J. Values lower than this are possible if the total
mass centre at the initial position is higher than the payload, or if the total mass centre at the final
position is lower than the payload. This highlights the one influence of plant design on potential
system performance.

Holding the optimal plant design from Task A co-design fixed while optimizing the joint
trajectories q(¢) for Task B, the minimum energy consumption is 116J. For the joint actuators
from the baseline design to be reused, the maximum torque constraint of 7o = 210 Nm must
be satisfied. Unfortunately, the maximum joint torques here are 7jmax = 210 Nm and 7 pmax =
401 Nm, illustrated in Figures 6(b) and 6(c). This result confirms that the Task A plant design
is incapable of performing Task B while satisfying torque requirements. It can be shown by
parametrically adjusting torque limits and iteratively solving the optimal trajectory problem that
actuators capable of 382 Nm of torque are capable of getting the Task A baseline plant design to
perform Task B successfully; actuators with torque values less than this will not be capable of
completing Task B using the Task A plant design.

Observe from Figure 6 that passive dynamics are not exploited; torque values remain far from
zero. Task B performance clearly can be improved by redesigning the entire system specifically
for Task B requirements, although this may be a costly option. To provide an upper performance
bound and allow comparison with PLCD results, the manipulator was completely redesigned
using full co-design (i.e., both link lengths modified) to perform Task B with minimum energy.
The minimum energy consumption obtained using co-design was 52.6 J, and the optimal system
design for Task B is

xp = [2.28,1.14]",  x. = [0.691,1.52,—0.758, —0.0618]".

Referring to Figure 7(a), the trajectory is fundamentally different. The Task A plant design
was optimized earlier for a specific falling motion, which is evident in Figure 6(a), whereas the
more direct Task B co-design trajectory is much more efficient for Task B. The longer (and no
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Figure 6. Task B using Task A plant design: (a) payload trajectory; (b) joint 1 and (c) joint 2 torque—speed trajectories.
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Figure 7. Task B co-design results: (a) payload trajectory; (b) joint 1 and (c) joint 2 torque—speed trajectories.
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longer similar) link lengths place the system mass centre to the upper left of the payload, enabling
the payload to be hoisted into position using passive dynamics to some degree. While the torque
values illustrated in Figures 7(b) and 7(c) are not near zero, they are significantly lower than when
using the Task A plant design.

3.3. Plant-limited co-design for Task B

The Task B co-design result performed well, but was costly. Change in link mass is used as a
proxy cost function. The link lengths in the Task B co-design increased significantly, resulting in
a redesign cost of 14.5 kg. Here PLCD will be applied to obtain a system design for Task B that
meets requirements while minimizing the cost of plant design changes.

Step 1 in the PLCD process is to identify candidate plant design changes. The plant design in
this system has been simplified to two design variables, so a limited plant redesign will involve
changing either ¢; or £, (a more sophisticated limited plant redesign example can be found in a
companion article [Allison 2012a]). When attempting to use the Task A plant design to perform
Task B, it was discovered that the first torque constraint was active and the second was violated.
In PLCD the torque constraints will be satisfied at lower cost by identifying, using sensitivity
analysis, which of the two design variables would be most effective at reducing both maximum
joint torques.

Both the dg,i(p)/dp; and dC(p)/dp; terms for Equation (2) were computed using finite differ-
ences, where g,;(p) are the torque constraint violations and C(p) is the change in mass from the
Task A baseline design. Having gone through the Task A co-design process, a complete system
model that accommodates the independent design variables is available (which is normally not
the case), so x, can be used directly in the sensitivity analysis instead of p. The resulting cost
Jacobian is:

8grl(p) agrl(p)
i 9 | o[ 0205  —1.10
022(p) 9z | 10X [—0.00758 0.0525 | Nm/ke.

8C1 aCQ

Jc=

The first column indicates how sensitive joint torque violation is with respect to the cost of
changing ¢, (approximated using mass), and the second column expresses this sensitivity for £;.
Clearly, link 2 length is dominant, so the rest of the PLCD process is based on a plant redesign that
consists only of ¢, as the candidate plant design variable. In problems with more sophisticated
plant design problems, the set of candidate plant design variables would normally be larger than
one (Allison 2012a). Note that some candidate plant design variables may go unchanged during
the optimization step (Step 3) of the PLCD process, particularly if there is a large step increase
of cost for any non-zero change of a plant design variable.

The second step in the PLCD process specifies the development of a more complete system
model that incorporates dependence on candidate plant design variables. A complete system model
is already available from Tasks A and B co-design, so this step can be skipped here. Normally a
model like this is not available; engineers at this stage will have a model useful only for control
design, and would need to put forth significant effort to develop a model that relates independent
design variables to control design model parameters.

In addition to solving Problem (3) for this example, a parametric study on ¢, was performed
to illustrate the tradeoffs involved in this PLCD problem. Figure 8(a) illustrates the relationship
between ¢, and energy consumption, as well as maximum joint torque values. This figure shows
that choosing ¢, as the candidate plant design variable results in a large feasible domain for
the PLCD problem (0.48 < £, < 1.10 m). In other words, not only is it possible to meet Task B
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Figure 8. PLCD for Task B: (a) parametric study on £5; (b) Pareto set illustrating cost—energy tradeoff.

requirements by varying only £,, but many options exist, providing the opportunity to reduce cost
further. The minimum-cost design that solves Equation (3) is £, = 1.10m. This is the feasible
design that is closest to the original length of £, from the Task A design (1.63 m) (see Figure 8(a)).
The (proxy) cost of changing ¢, to 1.10m is 3.17 kg. If instead minimum energy design is sought,
the result is £, = 0.975 m. This comes at the price of a small cost increase to 3.59 kg, but reduces
energy consumption from 154 to 65.27J.

Figure 8(b) illustrates the tradeoff between plant change cost and energy consumption. At the
upper left end of the curve is the minimum-cost solution, but from this Pareto set it is clear that
energy consumption can be reduced significantly with only nominal cost increases. The dashed
line indicates the boundary of the attainable set that does not lie on the Pareto frontier. Note
that in this case the use of a complete lifecycle cost metric for ¢ (x) that includes redesign, use
(energy), and end-of-life costs is an alternative to multi-objective optimization, although tradeoff
information can be useful in supporting the decision to make limited plant design changes.

Figure 9 illustrates the payload and torque—speed trajectories for the minimum-cost design
resulting from the Task B PLCD solution. The payload trajectory is fairly similar to the trajectory
associated with using the Task A design for Task B. Torque does not remain near zero, indi-
cating passive dynamics do not play a large role in system response. Passive dynamics become
more significant when switching to the minimum energy solution (¢, = 0.975 m, trajectory not
shown). Maximum torque for both joints in the minimum-cost solution is 210 Nm, meeting Task
B requirements.
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Figure 9. Task B PLCD results: (a) payload trajectory; (b) joint 1 and (c) joint 2 torque—speed trajectories.
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Given the simplicity of plant design here, it can be verified that £, was the correct choice for
limited plant redesign by investigating the outcome of choosing ¢, instead. Choosing ¢, as the can-
didate plant design variable does result in a feasible PLCD problem, but the feasible domain is very
narrow (0.42 < £; < 0.45m), plant modification cost is higher (minimum cost is 10.0kg), and
energy consumption is much higher (354 J). In this case the sensitivity-based approach to selecting
candidate plant modifications succeeded. Other more sophisticated approaches for selecting can-
didate plant modifications should be explored, including those that address change propagation
through a system more thoroughly (Giffin ef al. 2009).

Table 1 summarizes the numerical results of the robotic manipulator case study. For Task A,
co-design reduced energy consumption significantly, utilizing passive dynamics of the physical
system. Completely redesigning the system for Task B using co-design resulted in the low-
est energy consumption for Task B (52.67J), but came at a plant modification cost of 14.5kg.
Redesigning only link 2 (identified during Step 1 of PLCD) using co-design to minimize energy
consumption resulted in energy consumption of 65.2J, an increase of only 24%, but at 75.2%
lower cost. Applying PLCD to task B (minimum cost) resulted in an even lower 3.17 kg modifica-
tion cost, but increased energy consumption to 154 J. The tradeoff between energy consumption
and cost may be evaluated using the Pareto set illustrated in Figure 8(b) to determine whether
a design between the minimum-cost PLCD result and the minimum energy design would be
appropriate. Finally, it was confirmed that sensitivity analysis predicted correctly that choos-
ing ¢, as the limited redesign variable would produce the best results. Choosing ¢; instead
resulted in significantly higher energy consumption for Task B at a cost nearly as high as
full redesign.

4. Discussion

As engineering system scale and complexity increase, limited system redesign (as opposed to
designing from scratch) is becoming more commonplace. In the redesign of mechatronic systems,
engineers often seek to meet performance requirements for new applications through control
design changes alone. While usually less expensive than physical design changes, control design
changes alone may be insufficient. If control system modification is inadequate, limited physical
system design changes should be investigated since complete system redesign may be impractical.

In this article a solution was proposed for mechatronic system repurposing that involves a lim-
ited redesign of the physical system (plant). Here a subset of plant components are selected for
redesign, reducing plant modification cost. The limited plant and control design changes could
be made using a traditional sequential approach, or a ‘co-design’ approach could be used where
plant and control design changes are considered simultaneously to produce a superior system-
optimal design. The latter approach, detailed in this article, is the first formal methodology for
plant-limited co-design, i.e., an integrated approach for solving the system repurposing problem

Table 1. Summary of robotic manipulator design results.

Xp Energy (J) Cost (kg)
A nominal xp [0.60,0.60]T 21.3 -
A co-design [1.77,1.63]T 0.0272 -
B co-design [2.28,1.14]T 52.6 14.5
B PLCD (Xp = {2, min E) [1.77,0.975]T 65.2 3.59
B PLCD (Xp = {2, min cost) [1.77,1.10]T 154 3.17

B PLCD (Xp = £1, min cost) [0.45,1.63]T 354 10.0
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with limited plant changes. Candidate plant design changes are identified using sensitivity anal-
ysis, and optimization is used to solve the resulting Plant-Limited Co-Design (PLCD) problem.
It was shown that the sensitivity analysis did lead to the correct candidate plant modifications
using a robotic manipulator design example. In this example the objective was to perform a spe-
cific manipulation task in a prescribed amount of time while minimizing energy consumption
and satisfying deflection and torque constraints. The manipulator design example also demon-
strated the effectiveness of co-design for exploiting passive system dynamics to reduce energy
consumption.

The primary contribution here is the development of a formal approach for solving mechatronic
PLCD problems. This approach may be viewed as an intermediate step for industry toward full-
system co-design. Engineering firms may be reluctant to embrace co-design methods for ground-
up development of new mechatronic systems; PLCD, however, may be easier to adopt because
of reduced model development requirements, smaller adoption investment, and rapid realization
of co-design benefits. PLCD can aid in reducing cost, energy consumption, and material usage
in the development of mechatronic systems by supporting the reuse of existing systems. PLCD
also has value beyond repurposing; systems that perform poorly for their original task may be
improved via limited system redesign.

Formalization of a limited redesign approach for mechatronic systems establishes PLCD as
a new design paradigm and generates numerous opportunities for future work. The example
presented here involved a simplified physical system design; several questions still need to be
addressed, including how to accommodate topological plant design changes such as adding,
removing, or replacing components in addition to modifying existing components. In the manip-
ulator example, the control architecture was assumed to be the same in the modified system; future
work should address topological changes to control architecture in Steps 2 and 3 of PLCD. More
accurate cost modelling is needed, and the sensitivity analysis used here may not work for system
design problems with a larger or more complicated model or design space. Here an early-stage
control design approach was used; future work may involve detailed control design decisions,
observer design, or sensor/actuator placement. Finally, the PLCD strategy may be extensible to
other systems requiring redesign besides mechatronic systems.

5. Conclusion

In summary, PLCD is a promising new area of mechatronic design that supports the repurposing of
existing systems for new applications or improving underperforming systems. It has the potential
to produce significant cost, energy and material savings, and is easier for practitioners to implement
than full system co-design. Continued development of PLCD methodology and application to new
case studies should be pursued to enhance the ability to design and manage increasingly complex
engineering systems.
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