
1

s
a
t
s
s
q
u
f
a

t
r
c
t
s
c
t
o
i
i
v
s
i
c

s
s
s
t
t

J
m
E

J

Downl
James T. Allison1

Senior Applications Engineer
The Mathworks, Inc.,

Natick, MA 01760
e-mail: james.allison@mathworks.com

Panos Y. Papalambros
Professor

Department of Mechanical Engineering,
University of Michigan,

G.G. Brown Building,
Ann Arbor, MI 48109

e-mail: pyp@umich.edu

Consistency Constraint Allocation
in Augmented Lagrangian
Coordination
Many engineering systems are too complex to design as a single entity. Decomposition-
based design optimization methods partition a system design problem into subproblems,
and coordinate subproblem solutions toward an optimal system design. Recent work has
addressed formal methods for determining an ideal system partition and coordination
strategy, but coordination decisions have been limited to subproblem sequencing. An
additional element in a coordination strategy is the linking structure of the partitioned
problem, i.e., the allocation of constraints that guarantee that the linking variables
among subproblems are consistent. There may exist many alternative linking structures
for a decomposition-based strategy that can be selected for a given partition, and this
selection should be part of an optimal simultaneous partitioning and coordination
scheme. This article develops a linking structure theory for a particular class of
decomposition-based optimization algorithms, augmented Lagrangian coordination
(ALC). A new formulation and coordination technique for parallel ALC implementations
is introduced along with a specific linking structure theory, yielding a partitioning and
coordination selection method for ALC that includes consistency constraint allocation.
This method is demonstrated using an electric water pump design problem.
�DOI: 10.1115/1.4001525�
Introduction
Many engineering systems are too complex to design as a

ingle entity, but can be divided into smaller and more manage-
ble subproblems. Each subproblem is formulated as an optimiza-
ion problem, and a coordination strategy is used to guide repeated
ubproblem solutions toward a consistent and optimal system de-
ign. This decomposition-based design optimization approach re-
uires an understanding of links between the analysis functions
sed to compute the responses of the various parts of the system
or a given design. The analysis models are represented here using
set of m inter-related analysis functions, as shown in Fig. 1.
Each analysis function may be an objective, constraint, or in-

ermediate function. We assume here that the input and output
equirements of these functions are known precisely; this is the
ase when the analysis functions correspond to computer simula-
ions. The ith analysis function ai�xi ,yi� depends on xi, which is a
ubset of the system design variable vector x, and on yi, which is
omposed of the components of the system coupling variable vec-
or y that are input to ai. Coupling variables are analysis function
utputs that are required as inputs to other analysis functions; yij
s the vector of quantities passed from a j to ai. Design variables
nput to ai only are the local design variables x�i, and design
ariables input to ai and at least one other analysis function are the
hared design variables xsi. The set of all shared design variables
s xs. Coupling variables and shared design variables together
omprise a system’s set of linking variables z.

Application of decomposition-based design optimization to
olve a system design problem requires a priori definition of a
ystem partition and coordination strategy. A restricted growth
tring �RGS� p of length m can be used to specify a partition �1�;
he value of pi is the subproblem that analysis function i belongs
o. Numerous subjective, as well as formal, partitioning methods

1Corresponding author.
Contributed by the Design Automation Committee of ASME for publication in the

OURNAL OF MECHANICAL DESIGN. Manuscript received September 3, 2008; final
anuscript received February 24, 2010; published online June 17, 2010. Assoc.

ditor: Timothy W. Simpson.

ournal of Mechanical Design Copyright © 20

oaded 17 Jun 2010 to 144.212.3.4. Redistribution subject to ASME 
have been proposed; see Ref. �2� for a review. Available coordi-
nation strategy options depend on the type of system optimization
formulation used. Collaborative optimization �CO� uses a master
optimization problem to drive subproblems toward system opti-
mality and consistency �3�, while formulations such as analytical
target cascading �ATC� �4� and augmented Lagrangian coordina-
tion �ALC� �5,6� use penalty relaxation methods in tandem with
algorithms for solving systems of equations. In the latter class of
formulations, subproblem solution sequence in the coordination
algorithm influences computational expense. Allison et al. �2�
showed that partitioning and subproblem sequence decisions are
coupled, and proposed a combined partitioning and coordination
�P/C� decision method for reducing problem complexity and com-
putational expense. Coordination decisions in this method were
limited to subproblem sequence. This article describes another
important component of coordination decisions, consistency con-
straint allocation, and shows how to incorporate it into a com-
bined partitioning and coordination decision method for ALC in
an automated way. Section 2 reviews the ALC method to motivate
the need for proper consistency constraint allocation. Section 3
introduces a new parallel ALC to enable parallel solution of all
subproblems when the number of subproblems exceeds the num-
ber of processors. Section 4 introduces the theory for analyzing
linking structures using graph theory and constraint satisfaction
programming. Section 5 describes how linking structure decisions
can be included in developing a partitioning and coordination
strategy for parallel ALC. Section 6 demonstrates the method us-
ing an electric water pump problem, followed by a conclusion in
Sec. 7.

2 Augmented Lagrangian Coordination
When a system is partitioned, some design variables may be

shared across subproblems, and some coupling variable relation-
ships may cross subproblem boundaries. These variables are
termed external linking variables. ALC requires that subproblems

are solved independently of each other. This is accomplished by

JULY 2010, Vol. 132 / 071007-110 by ASME

license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



u
p
a

a
a
s
e
d
a
v
a
n
c
s

N
p

s
R
b
s
s
p
s
m
e
T
c

g

w
q
u

i
f
s

a
e
l
s
o

F
f

0

Downl
sing separate copies of external linking variables in each sub-
roblem. The ALC algorithm must ensure that these copies match
t convergence to guarantee system consistency.

The copies of design variables shared between subproblems i
nd j, local to subproblem i, are xs

ij. The external coupling vari-
bles that passed from subproblem j to i are yij, and the corre-
ponding analysis functions are aij�x j , ŷ j ,y j�, where y j are the
xternal coupling variables input to subproblem j, and x j are the
esign variables for subproblem j. Coupling variables that link
nalysis functions within subproblem j are the internal coupling
ariables ŷ j. The external linking variables between subproblems i
nd j are zij = �xs

ij ,yij�. ALC uses consistency constraints on exter-
al linking variables in the subproblem formulations to ensure
onsistency between subproblems. The external consistency con-
traints between subproblems i and j are:

cij�xi,x j, ŷi, ŷ j,yi,y j� = �yij − aij�x j, ŷ j,y j�,y ji − a ji�xi, ŷi,yi�,xs
ij − xs

ji�
�1�

ote that the components of xs
ij are part of the vector xi, and yij is

art of the vector yi.
Equation �1� specifies a very large number of consistency con-

traints; only a subset is actually required to ensure consistency.
equirements for a valid subset are provided in Sec. 4. The num-
er of possible ways to choose �i.e., allocate� consistency con-
traints is very large, and is a task beyond intuition for all but the
mallest system design problems. Allocation guidelines have been
roposed for constructing bilevel or hierarchical consistency con-
traint structures for ALC implementations �5,6�. These recom-
endations are helpful, but do not capitalize on the potential ben-

fit realized through tailoring ALC structure to a specific system.
his article proposes an automated technique for ALC consistency
onstraint allocation.

After consistency constraints are selected, an augmented La-
rangian penalty function is used to relax them as follows:

�ij�cij� = vijcij
T + �wij � cij�2

2 �2�

here vij and wij are vectors of penalty weights on the linear and
uadratic terms, respectively, and � indicates the Hadamard prod-
ct �i.e., element-by-element multiplication�.

Internal coupling variable consistency is fulfilled using auxil-
ary equality constraints in subproblem formulations. The analysis
unctions that correspond to ŷi are âi�xi , ŷi ,yi�. The internal con-
istency constraints for subproblem i are:

ci�xi, ŷi,yi� = ŷi − âi�xi, ŷi,yi� = 0 �3�
The set of indices for subproblems with external linking vari-

bles common to subproblem i is Ni. The design inequality and
quality constraints computed by analysis functions in subprob-
em i are gi and hi, respectively. The set of decision variables for
ubproblem i includes xi, ŷi, and yi. The ALC formulation of the

ig. 1 Input and output relationships for a system of analysis
unctions
ptimization problem for subproblem i is:

71007-2 / Vol. 132, JULY 2010

oaded 17 Jun 2010 to 144.212.3.4. Redistribution subject to ASME 
min
xi,ŷi,yi

f i�xi, ŷi,yi� + �
j�Ni�j�i

�ij�cij�xi,yij, ŷi��

+ �
j�Ni�j�i

� ji�c ji�xi,yij, ŷi��

subject to gi�xi, ŷi,yi� � 0

hi�xi, ŷi,yi� = 0

ci�xi, ŷi,yi� = ŷi − â�xi, ŷi,yi� = 0 �4�
A parallel coordination strategy for ALC is described in Sec. 3.

The formulation in Eq. �4� makes a distinction between shared
and coupling variables, in contrast to the original ALC formula-
tions �5,6�. This distinction allows analysis function outputs to be
used directly in consistency constraints, as shown in Eq. �1�. Ear-
lier ALC formulations use an additional linking variable copy in
place of analysis function outputs. This extra variable is a sub-
problem decision variable, and requires an additional equality
constraint to ensure it matches the corresponding analysis function
output. While avoiding the distinction between coupling and
shared variables simplifies formulation representation, it increases
the number of decision variables and constraints. The formulation
presented here applies only to quasiseparable problems, which are
problems that have linking variables but not linking functions.
Simulation-based design problems frequently are quasiseparable.
Recent ALC formulations apply also to problems with linking
functions �6�.

3 Parallel ALC
This section introduces a new parallel coordination approach

for ALC where the number of subproblems exceeds the number of
processors. An example system with six analysis functions is used
to illustrate the following concepts:

a1�x1,y15�, a2�x1�, a3�x6,y32�, a4�x1,x2� ,

a5�x2,x3,y52,y54�, a6�x4,x5,y65�
The structure of this system can be visualized using a directed

graph representation �Fig. 2�, and is represented compactly with
its reduced adjacency matrix �2�:

A =

a1 a2 a3 a4 a5 a6 x1 x2 x3 x4 x5 x6

a1 0 0 0 0 1 0 1 0 0 0 0 0

a2 0 0 0 0 0 0 1 0 0 0 0 0

a3 0 1 0 0 0 0 0 0 0 0 0 1

a4 0 0 0 0 0 0 1 1 0 0 0 0

a5 0 1 0 1 0 0 0 1 1 0 0 0

Fig. 2 Analysis function digraph for example system
a6 0 0 0 0 1 0 0 0 0 1 1 0

Transactions of the ASME

license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



s
p
c
c
t
v
k
=
t
s

i
c
c
u
i
s
e

F
b
v
y
x
e
p

i
o
T
s
t
t
N

J

Downl
The ALC algorithm specifies when each subproblem is to be
olved, communicates values between subproblems, and updates
enalty weights as needed. Coordination difficulty typically in-
reases with the number of external linking variables �5�. The
oordination of ALC subproblems can be viewed as the solution
o a system of nonlinear equations where subproblems are optimal
alue functions and external linking variable copies are the un-
nown quantities. The subproblem i input arguments are zi
�xsi ,yi�, and the outputs include updated values for xsi and ex-

ernal coupling variable copies passed from subproblem i to other
ubproblems �y•i�. The optimal value function for subproblem i is

z•i = �xsi,y•i� = �i�zi� �5�
The structure of the coordination problem can be analyzed us-

ng a directed graph where subproblems are represented by verti-
es, and the linking variable copies passed between subproblems
orrespond to arcs. Partitioning the example system from Fig. 2
sing p= �1,2 ,2 ,3 ,3 ,4� results in the subproblem graph depicted
n Fig. 3, where the boxes correspond to vertices that represent
ubproblems, and analysis functions that are contained within
ach subproblem are displayed.

The linking variable superscripts indicate subproblem of origin.
igure 3 illustrates the external linking variable copies that must
e passed between subproblems. Note that the external coupling
ariables ȳ13, ȳ32, and ȳ43 correspond to the coupling variables
15, y52, and y65, respectively. While subproblems 2 and 3 share
1, copies of x1 are not communicated between them; Sec. 4 will
xplain the validity of this structure. Figure 4 illustrates the sub-
roblem graph in more compact form.

The ALC algorithm requires an inner and an outer loop. The
nner loop solves the system of equations formed by subproblem
ptimal value functions for the external linking variable values.
he system of equations to be solved is z=��z�S, where z is the
et of all external linking variable copies; �= ��1 ,�2 , . . . ,�N� is
he optimal value function for all subproblems; and S is a selec-
ion matrix that matches the outputs of � to the components of z.
ote that inner loop solution alone does not ensure consistency,

Fig. 3 Subproblem graph
Fig. 4 Condensed subproblem graph

ournal of Mechanical Design

oaded 17 Jun 2010 to 144.212.3.4. Redistribution subject to ASME 
only a fixed point. The inner loop may be solved exactly, inex-
actly, or even executed with a single iteration. The outer loop
computes new penalty weight values using inner loop results and
the method of multipliers, guiding the system toward consistency
�7�.

An algorithm for solving systems of nonlinear equations is used
for the inner loop problem. A typical approach is to apply fixed
point iteration �FPI�, also known as nonlinear Gauss–Seidel, by
solving each subproblem in sequence, providing the most recent
linking variable information for each subproblem solution. Jacobi
iteration may also be used to enable parallel solution of all sub-
problems. If the number of processors available is insufficient for
complete parallel execution, block parallel Gauss–Seidel may be
applied to blocks of subproblems sequenced into stages. The as-
signment of subproblems into stages is specified by the stage as-
signment vector s, where the value of si is the stage that subprob-
lem i belongs to. The inner loop stages for the running example
system correspond to Fig. 5 if s= �1,1 ,2 ,2�. At each inner loop
iteration, subproblems 1 and 2 are solved in parallel using values
for z12, z21, z23, and z13 from the previous inner loop iteration.
Subproblems 3 and 4 are solved in parallel using z31 and z32
computed during stage 1, and z43 and z34 from the previous inner
loop iteration. Using a stage assignment that reduces the number
of values obtained from the previous iteration can help speed in-
ner loop convergence. Global convergence proofs for the Gauss–
Seidel and Jacobi approaches are available under certain condi-
tions; see Ref. �8�. These conditions are more restrictive for Jacobi
iteration than for Gauss–Seidel; thorough convergence analysis,
however, is beyond the scope of the present article and is an
appropriate topic for further research.

4 Linking Structure Analysis
One distinguishing characteristic of formulations for

decomposition-based design optimization is linking structure; i.e.,
different formulations allow specific approaches to structuring
consistency constraints. Most methods require a bilevel or a mul-
tilevel hierarchical constraint structure. ALC is unique in the flex-
ibility it provides for consistency constraint structure, which en-
ables potentially more efficient implementations where linking
structure is tailored to the problem at hand. While flexibility is a
beneficial feature, it may be difficult to manage. Early ALC ap-
proaches rely on bilevel or multilevel hierarchical structures to
guide linking structure decisions. Deciding between the numerous
nonhierachical possibilities is a task beyond intuition for all but
the simplest systems. Optimization techniques can be applied ef-
fectively to this task, resulting in superior ALC implementations.
A deeper understanding of consistency constraint structure is de-
veloped in this section using techniques from constraint satisfac-

Fig. 5 Stage graph
tion programming. The theory required to provably identify the

JULY 2010, Vol. 132 / 071007-3

license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



s
d
t
s

v
g
c
l

H
t
i
t
n
t
s
c
t
t
s
a

d
w
c
s
d
a
f
o
g
s
m

a
�
l
g
c
n

w
a
p

w
a
�
g
s
c
v
w
p

s
c
a
o
m
a

0

Downl
et of valid consistency constraint allocation options for ALC is
eveloped, and Sec. 5 uses these results to define an optimal par-
itioning and coordination decision problem for ALC with linking
tructure considerations.

We will focus on consistency with respect to a single linking
ariable z that in general could be external or internal. The lan-
uage below is appropriate for the external case. A system is
onsistent with respect to a linking variable when all pairs of
inking variable copies are consistent as follows:

z�i� = z�j�, ∀ i � j, i, j � �1,2, . . . ,nz	 �6�

ere z�i� is the copy of z associated with subproblem i, and nz is
he number of subproblems that share z. The above statement
mplies that nz�nz−1� constraints are required to assure consis-
ency with respect to z. Since z�i�=z�j� is equivalent to z�j�=z�i�, the
umber of constraints can be reduced to nz�nz−1� /2 by adopting
he convention that the terms in the constraint z�i�=z�j� are ordered
uch that i� j. It will be shown that certain subsets of consistency
onstraints can ensure consistency of a linking variable, and that
he minimum number of constraints required to ensure consis-
ency is nz−1. It will be demonstrated that these minimal con-
traint sets are linearly independent, which is a requirement of the
ugmented Lagrangian penalty method used in ALC.

4.1 Consistency Constraint Graphs. Montanari �9� intro-
uced the concept of using graphs to represent constraint sets,
here vertices correspond to variables and edges correspond to

onstraints on variables whose vertices they connect. These con-
traint graphs are helpful in analyzing constraint set structure and
eveloping solutions for constraint satisfaction problems �10�;
long with results from constraint programming, they provide a
ramework for understanding consistency constraints in system
ptimization. Applications of constraint satisfaction theory in en-
ineering design have included constraint based design �11�, en-
uring geometric feasibility of assemblies �12� and high-speed
achinery design �13�.
A binary constraint is a constraint on at most two variables, and

binary constraint graph corresponds to a set of binary constraints
14�. The set of nz�nz−1� /2 binary consistency constraints on a
inking variable can be represented by the complete undirected
raph Knz. An edge �i , j	 represents the constraint z�i�=z�j�, which
an be expressed in a negative null form as z�i�−z�j�=0. A conve-
ient representation of this constraint is:

�ijz̃
T = 0 �7�

here �ij is the constraint vector that corresponds to edge �i , j	,
nd z̃ is the vector of all nz copies of the linking variable z. More
recisely,

�ij = ei − e j �8�

z̃ = �z�1�,z�2�, . . . ,z�nz�� �9�

here ei is the ith unit vector of length nz. Two constraints are
djacent if their corresponding constraint graph edges are adjacent
i.e., they share a common variable�. A consistency constraint
raph Gc is defined as a subgraph of Knz that corresponds to a
ubset of the nz�nz−1� /2 consistency constraints. The consistency
onstraint matrix � for Gc is composed of all constraint �row�
ectors �ij that correspond to edges in Gc. The edges in Gc specify
hich consistency constraints are to be used in an ALC solution
rocess.

4.2 Valid Consistency Constraint Graphs. Not every pos-
ible consistency constraint graph is valid for use with ALC. A
onsistency constraint graph is valid if its associated constraints
re equivalent to the constraints specified by Knz, and if the rows
f the corresponding � are linearly independent. The first require-
ent ensures complete consistency of the associated linking vari-
bles, and the second is necessary for the success of the aug-

71007-4 / Vol. 132, JULY 2010

oaded 17 Jun 2010 to 144.212.3.4. Redistribution subject to ASME 
mented Lagrangian penalty method used in ALC. After the
development of preliminary concepts, necessary and sufficient
conditions for the validity of constraint graphs will be given.

Two sets of constraints are equivalent if their feasible domains
are equal. The task of finding reduced sets of constraints equiva-
lent to some original set is known as problem reduction. A con-
straint is redundant if its removal does not change the feasible
domain of a constraint set. The composition of adjacent con-
straints can induce implicit constraints. For example, if the con-
straints z�2�=z�5� and z�5�=z�7� are specified explicitly in the prob-
lem linking structure, the constraint z�2�=z�7� will be satisfied
implicitly if the two explicit constraints are met. A constraint is
said to be explicit if its corresponding edge exists in Gc, and
implicit if it does not. A constraint is redundant if it is both ex-
plicit and implicit �10�. The properties of consistency constraint
graphs enable easy identification of implicit and redundant con-
straints for the purpose of problem reduction. A consistency con-
straint graph is minimal if it specifies the fewest number of con-
straints required to ensure consistency.

Identification of implicit constraints requires application of a
binary operator called constraint composition that generates a new
constraint from two adjacent constraints �14�.

DEFINITION. Let �1�i , j� and �2�j ,k� be two binary constraints
with a common variable �z�j�� corresponding to vertex j, and let
their composition be �c�i ,k�. A binary constraint composition is
valid if values for z�i� and z�k� satisfy �c�i ,k� if and only if there
exists a value of z�j� such that �1�i , j� and �2�j ,k� are satisfied.

In a consistency constraint graph two constraints with a com-
mon variable can be composed to form an implicit constraint by
taking the vector sum of the corresponding constraint vectors.

PROPOSITION 4.1. The composition of the consistency con-
straints defined by �ij and � jk with the common variable z�j� is
�ik=�ij +� jk=ei−e j +e j −ek=ei−ek.

Proof. Let ai and ak be values for z�i� and z�k�, respectively, such
that �ikz̃T=0 is satisfied. By definition of �ik, ai=ak. By selecting
a value aj for z�j� such that ai=aj =ak, the constraints �ijz̃T=0 and
� jkz̃T=0 consequently are satisfied. Let bi, bj, and bk be values for
z�i�, z�j�, and z�k�, respectively, that satisfy �ijz̃T=0 and � jkz̃T=0.
Since this satisfaction implies bi=bj and bj =bk, bi=bk and the
composed constraint �ikz̃T=0 is satisfied. Therefore, �ik=�ij +� jk
is a valid constraint composition. �

A higher than binary constraint composition is defined by the
recursive application of a binary constraint composition. Binary
consistency constraints that share a common variable have corre-
sponding edges that are incident to the common variable vertex.
At each stage of recursive composition a new edge can be in-
cluded in the composition if it has a common vertex with the
implicit edge generated by the intermediate composition. This oc-
curs when all edges in a set to be composed lie in a connected
path on Gc. Suppose pij is a connected path of length � between
the vertices i and j defined by the sequence of unique vertices

v1 ,v2 , . . . ,v� ,v�+1� where v1= i and v�+1= j. The constraint vec-
tor resulting from the extended composition of edges in pij is
�ij =��k,l	�pij�k�l�kl=ei−e j.

PROPOSITION 4.2. A constraint defined by �ij, whether implicit
or explicit, can be obtained through composition if and only if a
path pij exists in Gc.

Proof. If a path pij exists in Gc, extended constraint composi-
tion can be applied to obtain �ij as follows:

�ij = �
�k,l	�pij�k�l

�kl = ev1
− ev2

+ ev2
− ev3

+ . . . + ev�
− ev�+1

= �
k=1

�

evk

− �
k=2

�+1

evk
= ev1

+ �
k=2

�

evk
− �

k=2

�

evk
− ev�+1

= ev1
− ev�+1

= ei − e j
�10�

Transactions of the ASME

license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



e
d
c
i
h
c

f
g
c
a

l

o
T
G
p
t
o

n
e
e

a

e
t
c
c
c
r
f
f

p
a

o
e
p
i
c
f
I
h
T
c
n

a
c

J

Downl
If a path pij does not exist in Gc, then at least one edge �k , l	 in
very possible set of constraint edges will be pendant, i.e., inci-
ent to a vertex of degree 1. If k is the pendant vertex, �kl will
ontribute ek to the constraint composition. Since only edge �k , l	
s adjacent to k, no constraint vector in the composition can anni-
ilate ek. The case for l pendant is similar. Therefore, �ij =ei−e j
annot be obtained if pij does not exist in Gc. �

Extended constraint composition leads to a necessary condition
or the equivalence of Knz and Gc. If a consistency constraint
raph can be shown to be equivalent to Knz, its set of associated
onstraints will ensure complete consistency for the linking vari-
ble in consideration.

PROPOSITION 4.3. A consistency constraint graph Gc is equiva-
ent to Knz if and only if Gc is connected.

Proof. If Gc is equivalent to Knz, Gc specifies either an explicit
r an implicit edge for every constraint associated with Knz.
herefore, a path must exist between every pair of vertices, and
c is connected. If Gc is connected, a path exists between every
air of vertices and a constraint exists between every pair of ver-
ices in Gc, and the effective constraint sets and feasible domains
f Gc and Knz are identical. �

A consistency constraint graph is therefore minimal if it con-
ects the required vertices using the fewest possible number of
dges. By definition, a spanning tree uses the minimum number of
dges �nz−1� to ensure a graph is connected.

COROLLARY 4.4. A consistency constraint graph is minimal if
nd only if it is a spanning tree of Knz.
If Gc is connected and uses more than nz−1 edges, then a cycle

xists, and more than one path connects at least one pair of ver-
ices. Such a graph is not minimal since at least one redundant
onstraint exists that could be removed. Since any consistency
onstraint can be composed through a composition of explicit
onstraints if Gc is connected, the set of explicit constraints cor-
esponding to a minimally connected Gc can be viewed as a basis
or the constraints in Knz. The constraint vectors in this set are, in
act, linearly independent, so indeed form a basis.

PROPOSITION 4.5. The constraint vectors corresponding to ex-
licit edges in Gc are linearly independent if and only if Gc is
cyclic.

Proof. If Gc is acyclic, at most one path exists between any pair
f vertices. Therefore, if a constraint vector �ij can be obtained,
ither �ij is a row of � and edge �i , j	 exists in Gc, or a unique
ath pij with length greater than 1 exists such that �ij can be
nduced. If �ij is a row of �, edge �i , j	 is the only path pij, and no
omposition of other constraints will yield �ij. Since this is true
or all explicit constraints, the rows of � are linearly independent.
f Gc contains a cycle C, then two adjacent vertices on C �i and j�
ave at least two paths between them: the edge �i , j	 and C \ �i , j	.
herefore �ij is an explicit constraint that can be obtained through
omposition of other explicit constraints, and the rows of � are
ot linearly independent. �

COROLLARY 4.6. If Gc is minimal, it is an acyclic spanning tree
nd therefore has a linearly independent set of explicit consistency
onstraints.

Fig. 6 Graph representation of c
The independence properties of spanning trees are generaliz-

ournal of Mechanical Design

oaded 17 Jun 2010 to 144.212.3.4. Redistribution subject to ASME 
able. If I is the set of all spanning trees of a graph G and their
power sets, and E is the set of all edges of G, �E ,I� is the cycle
matroid of G. The maximal sets in I are bases, and I coincides
with the sets of linearly independent columns of the incidence
matrix of G �15�. Another result of Proposition 4.5 is that the set
of all constraint vectors on a linking variable and all linearly in-
dependent sets of these vectors form a vector matroid that corre-
sponds to the cycle matroid of Knz. The favorable properties of
binary consistency constraints enable not only the straightforward
identification of valid constraint sets, but also open the door to
increased understanding of consistency constraints due to their
link to spanning trees and cycle matroids.

The foregoing propositions lead to the main result of this
section.

PROPOSITION 4.7. Gc is a valid consistency constraint graph if
and only if Gc is a spanning tree of Kn.

Proof. If Gc is valid, the rows of � are linearly independent,
and Gc is acyclic by Proposition 4.5. It also follows from the
validity of Gc that consistency is assured; i.e., Gc is equivalent to
Kn. By Proposition 4.3, Gc is connected, and therefore Gc is a
spanning tree of Kn. Conversely, if Gc is a spanning tree of Kn, Gc
is connected and acyclic. It follows from Propositions 4.3 and 4.5
that Gc ensures consistency and linear independence of con-
straints. Therefore, Gc is valid. �

This result means that the set of consistency constraint alloca-
tion options for a linking variable z associated with nz subprob-
lems is defined by the set of all possible spanning trees for the
complete graph Knz. These trees may be represented easily and
algorithms exist for their enumeration. This makes practical the
inclusion of linking structure options in the optimal partitioning
and coordination decision problem for ALC. Linking structures
for other formulations, such as CO or ATC, have additional re-
strictions not present for ALC, and their analysis is left as future
work.

4.3 Example Consistency Constraint Graph. The consis-
tency constraint graph for x1 from the example system of Fig. 2 is
used to demonstrate valid consistency constraint options and their
graph representations. When the partition p= �1,2 ,2 ,3 ,3 ,4� is
used, x1 is shared between subproblems 1, 2, and 3. The three
available consistency constraints are displayed in Fig. 6�a� along-
side graph edges that represent these constraints. One possible
valid consistency constraint graph is shown in Fig. 6�b�. The vec-
tor of x1 copies is:

z̃ = �x1
�1�,x1

�2�,x1
�3�� �11�

and the linearly independent consistency constraint matrix for x1
that corresponds to the edge set �
1,2� , 
1,3�	 shown in Fig. 6�b�
is:

� =
�12

=
1 − 1 0

�12�

istency constraint options for x1
ons
�
�13

 �
1 0 − 1


JULY 2010, Vol. 132 / 071007-5

license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



5
f

u
u
s
t
s
a
t
i
q

l
c
s
n
�

s
n
d
a
v
A
l
v
t
c
r
c
d

e
c
p
h
l
u
i
p
p
e
i
r
b
i
t
n
p
r

c

a
N
l

r
m
u
s

e
p

0

Downl
Optimal Partitioning and Coordination Decisions
or Parallel ALC

Section 4 demonstrated that the set of consistency constraints
sed for a linking variable must connect associated subproblems
sing a tree structure to meet ALC convergence and system con-
istency requirements. Determining consistency constraint struc-
ure for every linking variable is an important coordination deci-
ion, and influences the computational expense and reliability of
n ALC implementation. This section extends the optimal parti-
ioning and coordination method presented in Ref. �2� by includ-
ng linking structure decisions along with partitioning and se-
uencing decisions.

If �i is the number of subproblems linked by the ith external
inking variable, then the number of valid options for allocating
onsistency constraints for this variable is the number of unique
panning trees for a graph with �i vertices, or �i

�i−2. If nz is the
umber of external linking variables in a problem, then

1
�1−2 ·�2

�2−2 · . . . ·�nz−1
�nz−1−2 ·�nz

�nz
−2 is the number of alternative linking

tructure options for a problem with a given system partition. The
umber of linking structure alternatives in a problem can be re-
uced by exploiting the natural structure present in coupling vari-
ble relationships. An analysis function output that is a coupling
ariable may be communicated to one or more analysis functions.
ll analysis functions receiving this coupling variable as an input

ink directly to the analysis function that computes the coupling
ariable; this structure forms a star graph, which is a spanning
ree. While it is possible to use other trees for coupling variable
onsistency constraints, we assume here that the naturally occur-
ing star graph is the consistency constraint graph used for each
oupling variable. This reduces the number of trees that must be
etermined to the number of shared design variables.

Two important factors contribute to overall ALC computational
xpense: coordination problem difficulty and subproblem diffi-
ulty. An intrinsic tradeoff exists between these two factors; fine
artitions may have lower subproblem expense, but can incur
igher coordination expense due to more complicated external
inking relationships. A metric for optimization problem size is
sed here to estimate subproblem expense. Coordination expense
s approximated using a metric based on the assumption that block
arallel Gauss–Seidel converges faster when linking variables in-
ut to subproblems are recently computed. Jacobi iteration is one
xtreme possibility where all input data are from the previous
teration, whereas sequential Gauss–Seidel �FPI� uses the most
ecently available data. Gauss–Seidel iteration is known to have
etter global and local convergence properties than the Jacobi
teration for linear systems �8�, but Jacobi iteration offers advan-
ages for parallelism. These arguments do not always extend to
onlinear systems, but are assumed to be reasonable in enabling a
riori partitioning and coordination decisions based on a system’s
educed adjacency matrix.

Once a system partition is defined, the subproblem graph can be
onstructed that describes external linking variable relationships,

long with its associated adjacency matrix. Ā is defined to be the
�N valued adjacency matrix for a partitioned system’s subprob-

em graph, where each entry indicates the dimension of the cor-

esponding linking variable. For example, if Āij =3, then the di-
ension of zij is 3. The coordination expense is estimated here

sing CS, a metric for coordination problem size that accounts for
equencing aspects of a coordination strategy:

CS = �
i=1

N

�
j=1

N

	ijĀij �13�

The value of 	ij quantifies in how many stages previous to the
valuation of subproblem i the linking variables zij were com-

uted. CS quantifies the number of linking variables in the coor-

71007-6 / Vol. 132, JULY 2010

oaded 17 Jun 2010 to 144.212.3.4. Redistribution subject to ASME 
dination problem, and also accounts for the length of time be-
tween linking variable calculation and its use as an input. The
metric 	ij is defined as follows:

	ij = �si − sj if si � sj

ns + si − sj if si � sj
� �14�

where ns=max�s� is the stage depth �i.e., the number of stages in
the implementation�.

A usual estimate for subproblem expense is subproblem size.
Previous approaches for quantifying subproblem size were based
only on the number of analysis functions or equations in each
subproblem �e.g., Ref. �16��. The metric used here is somewhat
more sophisticated, being based on optimization problem size.
The size of the optimization problem for subproblem i is defined
as:

SSi = �nx̄si
+ nx�i + nyi + nȳIi� + �nx̄sci + nyi + nȳi� + �nai� �15�

The first four terms comprise the number of decision variables
in subproblem i. The number of external shared variables associ-
ated with subproblem i is nx̄si

, the number of local variables is nx�i,
the number of internal coupling variables is nyi, and the number of
external input coupling variables is nȳIi. The next three terms ex-
press the number of consistency constraints in subproblem i. The
number of consistency constraints for external shared variables is
nx̄sci, the number of internal coupling variable consistency con-
straints is equal to nyi, and the number of consistency constraints
for external coupling variables is equal to nȳi. The last term is the
number of analysis functions �nai�. The maximum subproblem
size for each stage is computed, and SSmax is the average of the
maximum subproblem sizes.

The optimal P/C decision problem for parallel ALC with link-
ing structure considerations is to minimize simultaneously CS and
SSmax by selecting a system partition p, subproblem stage assign-
ment s, and a valid consistency constraint graph for each external
shared design variable. The length of the vector s is N, which
depends on p. This complication is handled easily when the opti-
mal P/C decision problem is solved with exhaustive enumeration.
The linking structure decisions depend also on p. System partition
changes the set of external shared design variables, and the sub-
problems associated with each external shared design variable. As
with stage assignment, linking structure can be handled with ex-
haustive enumeration. An evolutionary algorithm for making par-
titioning and coordination decisions was introduced in Ref. �17�,
and can handle this type of decision variable dependence.

A set-valued decision variable C is defined for the purpose of
representing problem linking structure. The cardinality of C is
equal to the number of external shared design variables in a prob-
lem with a given partition. Each member of this set defines the
consistency constraint graph for one of the shared variables. One
approach to representing a consistency constraint graph, which
must be a spanning tree, is with an edge set. For example, the
variable x1 in Fig. 3 is shared between P1, P2, and P3, but the
constraints on x1 appear only in c12 and c13, which are the consis-
tency constraints connecting P1 with P2 and P1 with P3, respec-
tively. The edge set corresponding to these constraints for x1 is
�
1,2� , 
1,3�	. By convention, edges are represented using or-
dered pairs 
i , j� such that i� j. This way each edge has only one
representation.

Now that we have defined the two objective functions and the
P/C decision variables, we can state formally the optimal P/C
problem:

min
p,s,C

�CS,SSmax	 �16�

The solution to this problem is a set of Pareto-optimal P/C

decision alternatives. This Pareto set helps assess the intrinsic

Transactions of the ASME

license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



t
a
a

6

s
l
s
c
P
d
c
i
t
1
t
f
l

T
c
D
p
c
o
p
s
t

F

ele

J

Downl
radeoffs in the optimal P/C problem. Note that specifying p, s,
nd C defines completely a parallel ALC partition, coordination
lgorithm, and set of subproblem formulations.

Example: Electric Water Pump Design Problem
The partitioning and coordination decision method for ALC de-

cribed above was applied to the electric water pump design prob-
em introduced in Ref. �2� and detailed in Ref. �18�. This example
ystem is relatively small �large, nonproprietary models are diffi-
ult to obtain�, but illustrates adeptly the proposed technique for
/C decision-making with linking structure considerations. This
esign problem involves a centrifugal pump for an automotive
ooling system driven by an electric motor. The design objective
s to reduce electric power consumption, subject to performance,
hermal, and geometric constraints. The optimal pump consumes
40 W during operation, compared with 300 W consumed by a
raditional belt-driven water pump. The reduced adjacency matrix
or the problem is the only information needed to solve the prob-
em in Eq. �16� above.

A =

a1 a2 a3 a4 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

a1 0 1 1 0 1 1 1 1 1 0 0 0 0 0

a2 1 0 0 1 1 1 1 1 0 0 0 0 0 0

a3 1 1 0 0 1 1 1 1 1 0 0 0 0 0

a4 0 0 1 0 0 0 0 0 0 1 1 1 1 1

�17�

he analysis functions a1–4 evaluate motor temperature T, motor
urrent I, motor speed 
, and pump drive torque �, respectively.
esign variables x1–5 describe motor geometry, and x6–10 describe
ump geometry. Using exhaustive enumeration of all p, s, and C
ombinations for this problem, 9295 unique partitioning and co-
rdination alternatives were identified, and two Pareto-optimal
oints were found. All instances are displayed in the CS−SSmax
pace in Fig. 7, and all partitioning and stage assignment options
hat correspond to three of these points are shown.

Point 1. Two P/C decision instances correspond to point 1 in

Fig. 7 ALC P/C results for
ig. 7, and all share the same partition and problem size metrics:

ournal of Mechanical Design

oaded 17 Jun 2010 to 144.212.3.4. Redistribution subject to ASME 
CS=2, SSmax=11, and p= �1,1 ,1 ,2�. Neither instance has any
shared design variables, but can be distinguished by subproblem
stage assignment: Instance 1: s= �1,2� and Instance 2: s= �2,1�.
These instances reflect a physical partition between the functions
that depend on the motor design variables, and the function that
depends on the pump design variables. This is an intuitive result,
but partitioning by physical system may not always be preferred.
In this case, there are no shared variables between the physical
subsystems, so there is an obvious advantage to this partition. This
may not always be true: Physical subsystems may have interfaces
that result in shared design variables, complicating P/C decisions.

Point 2. The single subproblem case, where CS=0 and SSmax
=20, is represented by point 2. Note that numerous P/C instances
exist with larger subproblem sizes and nonzero coordination prob-
lem sizes. These points represent especially poor options for con-
structing an ALC formulation of the electric water pump problem.
Moving from point 2 to point 1 reduces SSmax from 20 to 11, and
requires a coordination problem size of just 2. This indicates a
problem formulation that is a good candidate for decomposition-
based optimization because dividing the system into two subprob-
lems stands to reduce subproblem computational expense substan-
tially, while incurring only nominal coordination expense.

Point 3. A third point, not in the Pareto set, is examined for
illustrative purposes. Point 3 corresponds to 12 unique P/C in-
stances, all with the same partition and problem size metrics:
CS=30, SSmax=18, and p= �1,2 ,3 ,2�. All 12 instances have the
same set of external shared design variables: �x1 ,x2 ,x3 ,x4 ,x5	.
The first four are shared between three subproblems, so several
consistency constraint allocation options exist. One possible set of
valid consistency constraint graphs, with corresponding edge sets,
is shown in Fig. 8.

The 12 instances that correspond to point 3 are distinguished by
consistency constraint allocation and stage assignment. The two
stage assignments that appear here are Instances 1–6: s= �1,1 ,2�
and Instances 7–12: s= �2,2 ,1�. These stage assignments are il-
lustrated in Fig. 7, and both specify parallel solution of subprob-
lems 1 and 2. No Pareto-optimal points specify parallel subprob-

ctric water pump problem
lem solution. This is due to both problem structure and the

JULY 2010, Vol. 132 / 071007-7

license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



p
p
t
h
d
O
m
p
r
i
p
t
b

7

f
p
m
p
n
i
l
l
l
u
A
c
p
w
a
l
s
o

0

Downl
roblem size metrics selected. At point 1 we see that had we
laced both subproblems in Stage 1 for a parallel solution, the
ime between calculation and use of some linking variables would
ave actually increased, increasing CS. Only CS penalizes stage
epth �i.e., the number of stages in a parallel implementation�.
ther size metrics have been explored, such as the sum of all
aximum subproblem sizes for each stage ��SSmax�. This metric

enalizes stage depth, and when employed along with CS, the
esulting Pareto set contains only single-stage P/C alternatives. An
deal metric would be an accurate estimate of computational ex-
ense, including speedup for parallelism. Since this is impractical
o compute a priori for most problems, approximate metrics must
e used.

Conclusion
This work established an approach for constructing problem

ormulations for decomposition-based design optimization, and a
ossible set of metrics was proposed �i.e., CS and SSmax�. These
etrics approximate two competing sources of computational ex-

ense: coordination problem and subproblem solution expenses. A
ew formulation technique for parallel ALC implementations was
ntroduced, and used to study linking structure decisions. ALC
inking structure is defined by the way consistency constraints on
inking variables are allocated throughout a system design prob-
em. Graph theory and constraint satisfaction techniques were
sed to identify valid consistency constraint allocation options for
LC. This development enables inclusion of linking structure de-

isions with the optimal partitioning and coordination decision
roblem for ALC; it extends previous P/C decision methods,
hich accounted only for partitioning and sequencing decisions;

nd it may help system designers take full advantage of ALC
inking structure flexibility to tailor solution methods to system
tructure. Several open questions have been identified presenting
pportunities for future work, including convergence analysis,

Fig. 8 Consistency constraint allocation option for point 3
71007-8 / Vol. 132, JULY 2010

oaded 17 Jun 2010 to 144.212.3.4. Redistribution subject to ASME 
handling of larger size problems, investigation of alternative prob-
lem size metrics, inclusion of coupling variable consistency con-
straint allocation in the coordination decision problem, analysis of
linking structure for other system optimization formulations �such
as ALC with linking functions�, and demonstration on problems of
sufficient complexity that would defy the designer’s intuition.

Acknowledgment
This work was partially supported by a U.S. NSF Graduate

Research Fellowship and by the Automotive Research Center, a
U.S. Army Center of Excellence at the University of Michigan.
This support is gratefully acknowledged. The work of J.T.A. was
conducted while at the University of Michigan.

References
�1� Stanton, D., and White, D., 1986, Constructive Combinatorics, Springer-

Verlag, New York.
�2� Allison, J. T., Kokkolaras, M., and Papalambros, P. Y., 2009, “Optimal Parti-

tioning and Coordination Decisions in Decomposition-Based Design Optimi-
zation,” ASME J. Mech. Des., 131�8�, p. 081008.

�3� Braun, R. D., 1996, “Collaborative Optimization: An Architecture for Large-
Scale Distributed Design,” Ph.D. thesis, Stanford University, Stanford, CA.

�4� Kim, H. M., Michelena, N. F., Papalambros, P. Y., and Jiang, T., 2003, “Target
Cascading in Optimal System Design,” ASME J. Mech. Des., 125�3�, pp.
474–480.

�5� Tosserams, S., Etman, L. F. P., and Rooda, J. E., 2007, “An Augmented La-
grangian Decomposition Method for Quasiseparable Problems in MDO,”
Struct. Multidiscip. Optim., 34�3�, pp. 211–227.

�6� Tosserams, S., Etman, L. F. P., and Rooda, J. E., 2008, “Augmented Lagrang-
ian Coordination for Distributed Optimal Design in MDO,” Int. J. Numer.
Methods Eng., 73�13�, pp. 1885–1910.

�7� Bertsekas, D. P., 1999, Nonlinear Programming, 2nd ed., Athena Scientific,
Belmont, MA.

�8� Bertsekas, D. P., and Tsitsiklis, J. N., 1997, Parallel and Distributed Compu-
tation: Numerical Methods, Athena Scientific, Belmont, MA.

�9� Montanari, U., 1974, “Networks of Constraints: Fundamental Properties and
Applications to Picture Processing,” Inf. Sci. �N.Y.�, 7, pp. 95–132.

�10� Tsang, E., 1993, Foundations of Constraint Satisfaction, Academic, San Di-
ego, CA.

�11� Kusiak, A., Wang, J., and He, D. W., 1996, “Negotiation in Constraint-Based
Design,” ASME J. Mech. Des., 118, pp. 470–477.

�12� Schmidt, L. C., Shi, H., and Kerkar, S., 2005, “A Constraint Satisfaction Prob-
lem Approach Linking Function and Grammar-Based Design Generation to
Assembly,” ASME J. Mech. Des., 127, pp. 196–205.

�13� Hicks, B. J., Medland, A. J., and Mullineux, G., 2006, “The Representation
and Handling of Constraints for the Design, Analysis, and Optimization of
High Speed Machinery,” Artif. Intell. Eng. Des. Anal. Manuf., 20, pp. 131–
328.

�14� Mackworth, A. K., 1977, “Consistency in Networks of Relations,” Artif. In-
tell., 8�1�, pp. 99–118.

�15� Oxley, J., 2003, “What Is a Matroid?,” Cubo Matemática Educacional, 5�3�,
pp. 179–218.

�16� Michelena, N. F., and Papalambros, P. Y., 1997, “A Hypergraph Framework for
Optimal Model-Based Decomposition of Design Problems,” Comput. Optim.
Appl., 8�2�, pp. 173–196.

�17� Allison, J. T., and Papalambros, P. Y., 2007, “Optimal Partitioning and Coor-
dination Decisions in System Design Using an Evolutionary Algorithm,” Pro-
ceedings of the Seventh World Conference on Structural and Multidisciplinary
Optimization, Seoul, South Korea, May 21–25.

�18� Allison, J. T., 2008, “Optimal Partitioning and Coordination Decisions in
Decomposition-Based Design Optimization,” Ph.D. thesis, University of
Michigan, Ann Arbor, MI.
Transactions of the ASME

license or copyright; see http://www.asme.org/terms/Terms_Use.cfm


