Consistency Constraint Allocation
in Augmented Lagrangian
Coordination

Many engineering systems are too complex to design as a single entity. Decomposition-
based design optimization methods partition a system design problem into subproblems,
and coordinate subproblem solutions toward an optimal system design. Recent work has
addressed formal methods for determining an ideal system partition and coordination
strategy, but coordination decisions have been limited to subproblem sequencing. An
additional element in a coordination strategy is the linking structure of the partitioned
problem, i.e., the allocation of constraints that guarantee that the linking variables
among subproblems are consistent. There may exist many alternative linking structures
for a decomposition-based strategy that can be selected for a given partition, and this
selection should be part of an optimal simultaneous partitioning and coordination
scheme. This article develops a linking structure theory for a particular class of
decomposition-based optimization algorithms, augmented Lagrangian coordination
(ALC). A new formulation and coordination technique for parallel ALC implementations
is introduced along with a specific linking structure theory, yielding a partitioning and
coordination selection method for ALC that includes consistency constraint allocation.

James T. Allison’

Senior Applications Engineer

The Mathworks, Inc.,

Natick, MA 01760

e-mail: james.allison@mathworks.com

Panos Y. Papalambros
Professor

Department of Mechanical Engineering,
University of Michigan,

G.G. Brown Building,

Ann Arbor, MI 48109

e-mail: pyp@umich.edu

This method is demonstrated using an electric water pump design problem.
[DOL: 10.1115/1.4001525]

1 Introduction

Many engineering systems are too complex to design as a
single entity, but can be divided into smaller and more manage-
able subproblems. Each subproblem is formulated as an optimiza-
tion problem, and a coordination strategy is used to guide repeated
subproblem solutions toward a consistent and optimal system de-
sign. This decomposition-based design optimization approach re-
quires an understanding of links between the analysis functions
used to compute the responses of the various parts of the system
for a given design. The analysis models are represented here using
a set of m inter-related analysis functions, as shown in Fig. 1.

Each analysis function may be an objective, constraint, or in-
termediate function. We assume here that the input and output
requirements of these functions are known precisely; this is the
case when the analysis functions correspond to computer simula-
tions. The ith analysis function a,(x;,y;) depends on x;, which is a
subset of the system design variable vector X, and on y;, which is
composed of the components of the system coupling variable vec-
tor y that are input to a;. Coupling variables are analysis function
outputs that are required as inputs to other analysis functions; y;;
is the vector of quantities passed from a; to a;. Design variables
input to a; only are the local design variables Xg;, and design
variables input to a; and at least one other analysis function are the
shared design variables xg;. The set of all shared design variables
is X,. Coupling variables and shared design variables together
comprise a system’s set of linking variables z.

Application of decomposition-based design optimization to
solve a system design problem requires a priori definition of a
system partition and coordination strategy. A restricted growth
string (RGS) p of length m can be used to specify a partition [1];
the value of p; is the subproblem that analysis function i belongs
to. Numerous subjective, as well as formal, partitioning methods

lCorresponding author.

Contributed by the Design Automation Committee of ASME for publication in the
JOURNAL OF MECHANICAL DESIGN. Manuscript received September 3, 2008; final
manuscript received February 24, 2010; published online June 17, 2010. Assoc.
Editor: Timothy W. Simpson.

Journal of Mechanical Design

Copyright © 2010 by ASME

have been proposed; see Ref. [2] for a review. Available coordi-
nation strategy options depend on the type of system optimization
formulation used. Collaborative optimization (CO) uses a master
optimization problem to drive subproblems toward system opti-
mality and consistency [3], while formulations such as analytical
target cascading (ATC) [4] and augmented Lagrangian coordina-
tion (ALC) [5,6] use penalty relaxation methods in tandem with
algorithms for solving systems of equations. In the latter class of
formulations, subproblem solution sequence in the coordination
algorithm influences computational expense. Allison et al. [2]
showed that partitioning and subproblem sequence decisions are
coupled, and proposed a combined partitioning and coordination
(P/C) decision method for reducing problem complexity and com-
putational expense. Coordination decisions in this method were
limited to subproblem sequence. This article describes another
important component of coordination decisions, consistency con-
straint allocation, and shows how to incorporate it into a com-
bined partitioning and coordination decision method for ALC in
an automated way. Section 2 reviews the ALC method to motivate
the need for proper consistency constraint allocation. Section 3
introduces a new parallel ALC to enable parallel solution of all
subproblems when the number of subproblems exceeds the num-
ber of processors. Section 4 introduces the theory for analyzing
linking structures using graph theory and constraint satisfaction
programming. Section 5 describes how linking structure decisions
can be included in developing a partitioning and coordination
strategy for parallel ALC. Section 6 demonstrates the method us-
ing an electric water pump problem, followed by a conclusion in
Sec. 7.

2 Augmented Lagrangian Coordination

When a system is partitioned, some design variables may be
shared across subproblems, and some coupling variable relation-
ships may cross subproblem boundaries. These variables are
termed external linking variables. ALC requires that subproblems
are solved independently of each other. This is accomplished by

JULY 2010, Vol. 132 / 071007-1

Downloaded 17 Jun 2010 to 144.212.3.4. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

» f,g,h

X = [xllgxsl] X = [x221xs2] Xm = [xlqusm]

a1(x1,)’1) az(x2,y2) am("m}’m)
Al A yoi
Y12 i=384,....m
Yi1 g Ymj
yl] yjm
Fig. 1 Input and output relationships for a system of analysis
functions

using separate copies of external linking variables in each sub-
problem. The ALC algorithm must ensure that these copies match
at convergence to guarantee system consistency.

The copies of design variables shared between subproblems i
and j, local to subproblem i, are i’vf The external coupling vari-
ables that passed from subproblem j to i are y;;, and the corre-
sponding analysis functions are a;(X;,¥;,y;), where y; are the
external coupling variables input to subproblem j, and X; are the
design variables for subproblem j. Coupling variables that link
analysis functions within subproblem j are the internal coupling
variables y; ¥j- The external linking variables between subproblems i
and j are z; ,-[xé ,¥i;]. ALC uses consistency constraints on exter-
nal linking variables in the subproblem formulations to ensure
consistency between subproblems. The external consistency con-
straints between subproblems i and j are:

Eij(ii7§j’yi’yj’yi’yj) = [ylj - Elj(ij’y}\‘]?yj)’yjl - Eji(ii’yﬁyi)’iii - izl]
(1

Note that the components of iij are part of the vector X;, and y;; is
part of the vector y;.

Equation (1) specifies a very large number of consistency con-
straints; only a subset is actually required to ensure consistency.
Requirements for a valid subset are provided in Sec. 4. The num-
ber of possible ways to choose (i.e., allocate) consistency con-
straints is very large, and is a task beyond intuition for all but the
smallest system design problems. Allocation guidelines have been
proposed for constructing bilevel or hierarchical consistency con-
straint structures for ALC implementations [5,6]. These recom-
mendations are helpful, but do not capitalize on the potential ben-
efit realized through tailoring ALC structure to a specific system.
This article proposes an automated technique for ALC consistency
constraint allocation.

After consistency constraints are selected, an augmented La-
grangian penalty function is used to relax them as follows:

¢Ij(clj) Vlj l]+||wlj clj||2 (2)
where v;; and w;; are vectors of penalty weights on the linear and
quadratic terms, respectively, and © indicates the Hadamard prod-
uct (i.e., element-by-element multiplication).

Internal coupling variable consistency is fulfilled using auxil-
iary equality constraints in subproblem formulations. The analysis
functions that correspond to ¥; are 4,(X;,¥;,y;). The internal con-
sistency constraints for subproblem i are:

(X, ¥, ¥:) =¥i— 4i(X;.¥;,¥:) = 0 (3)

The set of indices for subproblems with external linking vari-

ables common to subproblem i is AV;. The design inequality and

equality constraints computed by analysis functions in subprob-

lem i are g; and h;, respectively. The set of decision variables for

subproblem i/ includes X;, ¥;, and y;. The ALC formulation of the
optimization problem for subproblem i is:

071007-2 / Vol. 132, JULY 2010

@ @ Y32

Ys2

29

Fig. 2 Analysis function digraph for example system

(@)—)

min fl(XI’yl’y) + 2 ¢I](cl_](xl’ylj’yl))

X¥i¥i jeN|j>i

+ 2 &;i€;i(X, Y ¥:)

jeNji<i
subject to gi(X.¥.y) =0
hi(X;,¥,,y) =0

¢(X.¥,y) =¥, - 4(X.¥,¥,) =0 (4)
A parallel coordination strategy for ALC is described in Sec. 3.
The formulation in Eq. (4) makes a distinction between shared
and coupling variables, in contrast to the original ALC formula-
tions [5,6]. This distinction allows analysis function outputs to be
used directly in consistency constraints, as shown in Eq. (1). Ear-
lier ALC formulations use an additional linking variable copy in
place of analysis function outputs. This extra variable is a sub-
problem decision variable, and requires an additional equality
constraint to ensure it matches the corresponding analysis function
output. While avoiding the distinction between coupling and
shared variables simplifies formulation representation, it increases
the number of decision variables and constraints. The formulation
presented here applies only to quasiseparable problems, which are
problems that have linking variables but not linking functions.
Simulation-based design problems frequently are quasiseparable.
Recent ALC formulations apply also to problems with linking
functions [6].

3 Parallel ALC

This section introduces a new parallel coordination approach
for ALC where the number of subproblems exceeds the number of
processors. An example system with six analysis functions is used
to illustrate the following concepts:

ay(x;,yis), ax(xy), az(xgym), as(xi,xm),

as(X2,X3,V52:Vs54)s A6(X45X5,V65)
The structure of this system can be visualized using a directed
graph representation (Fig. 2), and is represented compactly with
its reduced adjacency matrix [2]:

a; a, az ag as dag X; Xy X3 X4 X5 Xg
a0 0 001 01 000 0O
al0 00 00001 00 0 00

A=a;/0 1 0 0 0 0 0 0 O O O 1
a0 0 0 0 0 01 1 0 0 0 O
as)0 1 0 1 0 0 01 1 0 0 O
a0 0 0 0 1 0 0 0 0 1 1 O

Transactions of the ASME

Downloaded 17 Jun 2010 to 144.212.3.4. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

Fig. 3 Subproblem graph

The ALC algorithm specifies when each subproblem is to be
solved, communicates values between subproblems, and updates
penalty weights as needed. Coordination difficulty typically in-
creases with the number of external linking variables [5]. The
coordination of ALC subproblems can be viewed as the solution
to a system of nonlinear equations where subproblems are optimal
value functions and external linking variable copies are the un-
known quantities. The subproblem i input arguments are z;
=[X,;,¥;], and the outputs include updated values for X,; and ex-
ternal coupling variable copies passed from subproblem i to other
subproblems (¥.;). The optimal value function for subproblem i is

z.;= X,y = m(z,) (5)

The structure of the coordination problem can be analyzed us-
ing a directed graph where subproblems are represented by verti-
ces, and the linking variable copies passed between subproblems
correspond to arcs. Partitioning the example system from Fig. 2
using p=[1,2,2,3,3,4] results in the subproblem graph depicted
in Fig. 3, where the boxes correspond to vertices that represent
subproblems, and analysis functions that are contained within
each subproblem are displayed.

The linking variable superscripts indicate subproblem of origin.
Figure 3 illustrates the external linking variable copies that must
be passed between subproblems. Note that the external coupling
variables y;3, ¥3,, and y43 correspond to the coupling variables
Y15, Y50, and ygs, respectively. While subproblems 2 and 3 share
X1, copies of x| are not communicated between them; Sec. 4 will
explain the validity of this structure. Figure 4 illustrates the sub-
problem graph in more compact form.

The ALC algorithm requires an inner and an outer loop. The
inner loop solves the system of equations formed by subproblem
optimal value functions for the external linking variable values.
The system of equations to be solved is z=(z)S, where z is the
set of all external linking variable copies; @m=[m, 7, ..., 7y] is
the optimal value function for all subproblems; and S is a selec-
tion matrix that matches the outputs of 7 to the components of z.
Note that inner loop solution alone does not ensure consistency,

Fig. 4 Condensed subproblem graph

Journal of Mechanical Design

Stage 1 Zoy
Z12
— A —
Z13 Z31
Zo3 v Z32
Stage 2 o
Z43
Z34

Fig. 5 Stage graph

only a fixed point. The inner loop may be solved exactly, inex-
actly, or even executed with a single iteration. The outer loop
computes new penalty weight values using inner loop results and
the method of multipliers, guiding the system toward consistency
[7].

An algorithm for solving systems of nonlinear equations is used
for the inner loop problem. A typical approach is to apply fixed
point iteration (FPI), also known as nonlinear Gauss—Seidel, by
solving each subproblem in sequence, providing the most recent
linking variable information for each subproblem solution. Jacobi
iteration may also be used to enable parallel solution of all sub-
problems. If the number of processors available is insufficient for
complete parallel execution, block parallel Gauss—Seidel may be
applied to blocks of subproblems sequenced into stages. The as-
signment of subproblems into stages is specified by the stage as-
signment vector s, where the value of s; is the stage that subprob-
lem 7 belongs to. The inner loop stages for the running example
system correspond to Fig. 5 if s=[1,1,2,2]. At each inner loop
iteration, subproblems 1 and 2 are solved in parallel using values
for z5, Zy, Z»3, and Z;3 from the previous inner loop iteration.
Subproblems 3 and 4 are solved in parallel using z3; and Z3,
computed during stage 1, and z,3 and z3,4 from the previous inner
loop iteration. Using a stage assignment that reduces the number
of values obtained from the previous iteration can help speed in-
ner loop convergence. Global convergence proofs for the Gauss—
Seidel and Jacobi approaches are available under certain condi-
tions; see Ref. [8]. These conditions are more restrictive for Jacobi
iteration than for Gauss—Seidel; thorough convergence analysis,
however, is beyond the scope of the present article and is an
appropriate topic for further research.

4 Linking Structure Analysis

One distinguishing characteristic of formulations for
decomposition-based design optimization is linking structure; i.e.,
different formulations allow specific approaches to structuring
consistency constraints. Most methods require a bilevel or a mul-
tilevel hierarchical constraint structure. ALC is unique in the flex-
ibility it provides for consistency constraint structure, which en-
ables potentially more efficient implementations where linking
structure is tailored to the problem at hand. While flexibility is a
beneficial feature, it may be difficult to manage. Early ALC ap-
proaches rely on bilevel or multilevel hierarchical structures to
guide linking structure decisions. Deciding between the numerous
nonhierachical possibilities is a task beyond intuition for all but
the simplest systems. Optimization techniques can be applied ef-
fectively to this task, resulting in superior ALC implementations.
A deeper understanding of consistency constraint structure is de-
veloped in this section using techniques from constraint satisfac-
tion programming. The theory required to provably identify the

JULY 2010, Vol. 132 / 071007-3

Downloaded 17 Jun 2010 to 144.212.3.4. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

set of valid consistency constraint allocation options for ALC is
developed, and Sec. 5 uses these results to define an optimal par-
titioning and coordination decision problem for ALC with linking
structure considerations.

We will focus on consistency with respect to a single linking
variable z that in general could be external or internal. The lan-
guage below is appropriate for the external case. A system is
consistent with respect to a linking variable when all pairs of
linking variable copies are consistent as follows:

D=9 Vvi#j ije{l,2,n% (6)

Here z¥) is the copy of z associated with subproblem i, and n? is
the number of subproblems that share z. The above statement
implies that n°(n°—1) constraints are required to assure consis-
tency with respect to z. Since 7=z is equivalent to z)=z, the
number of constraints can be reduced to n*(n°*—1)/2 by adopting
the convention that the terms in the constraint z'=z") are ordered
such that 7 <j. It will be shown that certain subsets of consistency
constraints can ensure consistency of a linking variable, and that
the minimum number of constraints required to ensure consis-
tency is n*—1. It will be demonstrated that these minimal con-
straint sets are linearly independent, which is a requirement of the
augmented Lagrangian penalty method used in ALC.

4.1 Consistency Constraint Graphs. Montanari [9] intro-
duced the concept of using graphs to represent constraint sets,
where vertices correspond to variables and edges correspond to
constraints on variables whose vertices they connect. These con-
straint graphs are helpful in analyzing constraint set structure and
developing solutions for constraint satisfaction problems [10];
along with results from constraint programming, they provide a
framework for understanding consistency constraints in system
optimization. Applications of constraint satisfaction theory in en-
gineering design have included constraint based design [11], en-
suring geometric feasibility of assemblies [12] and high-speed
machinery design [13].

A binary constraint is a constraint on at most two variables, and
a binary constraint graph corresponds to a set of binary constraints
[14]. The set of n*(n°~1)/2 binary consistency constraints on a
linking variable can be represented by the complete undirected
graph K,-. An edge {i,j} represents the constraint z)=z\), which
can be expressed in a negative null form as z)—z()=0. A conve-
nient representation of this constraint is:

0,2"=0 ™)

where 6); is the constraint vector that corresponds to edge {i,},
and 7 is the vector of all n* copies of the linking variable z. More
precisely,

0,-_1-=e,-—ej (8)

7=[z1.z?, ... "])

where e; is the ith unit vector of length n*. Two constraints are
adjacent if their corresponding constraint graph edges are adjacent
(i.e., they share a common variable). A consistency constraint
graph G, is defined as a subgraph of K. that corresponds to a
subset of the n*(n*=1)/2 consistency constraints. The consistency
constraint matrix @ for G, is composed of all constraint (row)
vectors 6; that correspond to edges in G,.. The edges in G, specify
which consistency constraints are to be used in an ALC solution
process.

4.2 Valid Consistency Constraint Graphs. Not every pos-
sible consistency constraint graph is valid for use with ALC. A
consistency constraint graph is valid if its associated constraints
are equivalent to the constraints specified by K, and if the rows
of the corresponding @ are linearly independent. The first require-
ment ensures complete consistency of the associated linking vari-
ables, and the second is necessary for the success of the aug-

071007-4 / Vol. 132, JULY 2010

mented Lagrangian penalty method used in ALC. After the
development of preliminary concepts, necessary and sufficient
conditions for the validity of constraint graphs will be given.

Two sets of constraints are equivalent if their feasible domains
are equal. The task of finding reduced sets of constraints equiva-
lent to some original set is known as problem reduction. A con-
straint is redundant if its removal does not change the feasible
domain of a constraint set. The composition of adjacent con-
straints can induce implicit constraints. For example, if the con-
straints z?=z% and 7=z are specified explicitly in the prob-
lem linking structure, the constraint z'=z7) will be satisfied
implicitly if the two explicit constraints are met. A constraint is
said to be explicit if its corresponding edge exists in G., and
implicit if it does not. A constraint is redundant if it is both ex-
plicit and implicit [10]. The properties of consistency constraint
graphs enable easy identification of implicit and redundant con-
straints for the purpose of problem reduction. A consistency con-
straint graph is minimal if it specifies the fewest number of con-
straints required to ensure consistency.

Identification of implicit constraints requires application of a
binary operator called constraint composition that generates a new
constraint from two adjacent constraints [14].

DEFINITION. Let y,(i,j) and y,(j,k) be two binary constraints
with a common variable (zV)) corresponding to vertex j, and let
their composition be 7y.(i,k). A binary constraint composition is
valid if values for z and z® satisfy v.(i,k) if and only if there
exists a value of zU) such that (i, /) and y,(j,k) are satisfied.

In a consistency constraint graph two constraints with a com-
mon variable can be composed to form an implicit constraint by
taking the vector sum of the corresponding constraint vectors.

PROPOSITION 4.1. The composition of the consistency con-
straints defined by 6; and @ with the common variable 2V s
0,=0,+6;=e,—e¢; +e —e,=e;,—¢e;.

Proof Let g; and ay be values for z\) and z, respectively, such
that 6,77 =0 is satisfied. By definition of 6y, a;=a;. By selecting
a value q; for 7Y such that a;,=a; ;=ay, the constraints 0l~jiT=O and

0.,27=0 consequently are satlsﬁed Let b;, b;, and by be values for

(/) , z9, and z®, respectively, that satisfy 0 iz T=0 and 0kz =0.
Smce this sat1sfact1on 1mp11es b;=b; and b =by, bi=b; and the
composed constraint @,z =0 is satlsﬁed Therefore 0,=0,;+0;
is a valid constraint composition.

A higher than binary constraint composition is defined by the
recursive application of a binary constraint composition. Binary
consistency constraints that share a common variable have corre-
sponding edges that are incident to the common variable vertex.
At each stage of recursive composition a new edge can be in-
cluded in the composition if it has a common vertex with the
implicit edge generated by the intermediate composition. This oc-
curs when all edges in a set to be composed lie in a connected
path on G.. Suppose p;; is a connected path of length & between
the vertices i and j defined by the sequence of unique vertices
(v1,V2,...,U5Us.1) Where v;=i and vg,;=j. The constraint vec-
tor resulting from the extended composition of edges in p;; is
0i=2 {1y cp,k<iO=ei—€;.

PROPOSITION 4.2. A constraint defined by 0,;, whether implicit
or explicit, can be obtained through composition if and only if a
path p;; exists in G..

Proof. If a path p;; exists in G, extended constraint composi-
tion can be applied to obtain 6; as follows:

3

0ij= 2 0k1=ev|_evz+ev2_ev3+ U5+l Eeuk
kb eplk<i =1

S+l S
_kzzevkzevl"'%evk_zevk_ev&_]zevl_ev&lzei_ej

(10)

Transactions of the ASME

Downloaded 17 Jun 2010 to 144.212.3.4. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

(1

Tyt — :c?) =0
a:gl) - mg;;) =0 zgz) - ;1:53) =0

w & @

(1) (2)

Ty T =

& ®)

mgl) — zg?’) = {)

w ® ®

Fig. 6 Graph representation of consistency constraint options for x,

If a path p;; does not exist in G, then at least one edge {k,[} in
every possible set of constraint edges will be pendant, i.e., inci-
dent to a vertex of degree 1. If k is the pendant vertex, 6;; will
contribute e; to the constraint composition. Since only edge {k, [}
is adjacent to k, no constraint vector in the composition can anni-
hilate e;. The case for / pendant is similar. Therefore, 6;;=€;—e;
cannot be obtained if p;; does not exist in G..

Extended constraint composition leads to a necessary condition
for the equivalence of K,: and G,. If a consistency constraint
graph can be shown to be equivalent to K, its set of associated
constraints will ensure complete consistency for the linking vari-
able in consideration.

PROPOSITION 4.3. A consistency constraint graph G, is equiva-
lent to K, if and only if G. is connected.

Proof. If G, is equivalent to Kz, G, specifies either an explicit
or an implicit edge for every constraint associated with K.
Therefore, a path must exist between every pair of vertices, and
G, is connected. If G, is connected, a path exists between every
pair of vertices and a constraint exists between every pair of ver-
tices in G, and the effective constraint sets and feasible domains
of G, and K- are identical. |

A consistency constraint graph is therefore minimal if it con-
nects the required vertices using the fewest possible number of
edges. By definition, a spanning tree uses the minimum number of
edges (n°—1) to ensure a graph is connected.

COROLLARY 4.4. A consistency constraint graph is minimal if
and only if it is a spanning tree of K.

If G, is connected and uses more than n*—1 edges, then a cycle
exists, and more than one path connects at least one pair of ver-
tices. Such a graph is not minimal since at least one redundant
constraint exists that could be removed. Since any consistency
constraint can be composed through a composition of explicit
constraints if G, is connected, the set of explicit constraints cor-
responding to a minimally connected G, can be viewed as a basis
for the constraints in K,-. The constraint vectors in this set are, in
fact, linearly independent, so indeed form a basis.

PROPOSITION 4.5. The constraint vectors corresponding to ex-
plicit edges in G, are linearly independent if and only if G, is
acyclic.

Proof. If G, is acyclic, at most one path exists between any pair
of vertices. Therefore, if a constraint vector @; can be obtained,
either 6; is a row of @ and edge {i,;} exists in G, or a unique
path p;; with length greater than 1 exists such that ;; can be
induced. If 6;; is a row of @, edge {i, j} is the only path p;;, and no
composition of other constraints will yield @,;. Since this is true
for all explicit constraints, the rows of @ are linearly independent.
If G, contains a cycle C, then two adjacent vertices on C (i and j)
have at least two paths between them: the edge {i,j} and C\{i,}.
Therefore @;; is an explicit constraint that can be obtained through
composition of other explicit constraints, and the rows of @ are
not linearly independent. |

COROLLARY 4.6. If G, is minimal, it is an acyclic spanning tree
and therefore has a linearly independent set of explicit consistency
constraints.

The independence properties of spanning trees are generaliz-

Journal of Mechanical Design

Downloaded 17 Jun 2010 to 144.212.3.4. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

able. If 7 is the set of all spanning trees of a graph G and their
power sets, and E is the set of all edges of G, (E,Z) is the cycle
matroid of G. The maximal sets in Z are bases, and Z coincides
with the sets of linearly independent columns of the incidence
matrix of G [15]. Another result of Proposition 4.5 is that the set
of all constraint vectors on a linking variable and all linearly in-
dependent sets of these vectors form a vector matroid that corre-
sponds to the cycle matroid of K,. The favorable properties of
binary consistency constraints enable not only the straightforward
identification of valid constraint sets, but also open the door to
increased understanding of consistency constraints due to their
link to spanning trees and cycle matroids.

The foregoing propositions lead to the main result of this
section.

PROPOSITION 4.7. G, is a valid consistency constraint graph if
and only if G. is a spanning tree of K,,.

Proof. If G, is valid, the rows of @ are linearly independent,
and G, is acyclic by Proposition 4.5. It also follows from the
validity of G, that consistency is assured; i.e., G, is equivalent to
K,. By Proposition 4.3, G. is connected, and therefore G, is a
spanning tree of K,,. Conversely, if G, is a spanning tree of K,,, G,.
is connected and acyclic. It follows from Propositions 4.3 and 4.5
that G. ensures consistency and linear independence of con-
straints. Therefore, G, is valid. |

This result means that the set of consistency constraint alloca-
tion options for a linking variable z associated with n* subprob-
lems is defined by the set of all possible spanning trees for the
complete graph K,.. These trees may be represented easily and
algorithms exist for their enumeration. This makes practical the
inclusion of linking structure options in the optimal partitioning
and coordination decision problem for ALC. Linking structures
for other formulations, such as CO or ATC, have additional re-
strictions not present for ALC, and their analysis is left as future
work.

4.3 Example Consistency Constraint Graph. The consis-
tency constraint graph for x; from the example system of Fig. 2 is
used to demonstrate valid consistency constraint options and their
graph representations. When the partition p=[1,2,2,3,3,4] is
used, x; is shared between subproblems 1, 2, and 3. The three
available consistency constraints are displayed in Fig. 6(a) along-
side graph edges that represent these constraints. One possible
valid consistency constraint graph is shown in Fig. 6(b). The vec-
tor of x; copies is:

zZ= [x(ll),x(lz),x(f)]

(11)

and the linearly independent consistency constraint matrix for x;
that corresponds to the edge set {(1,2),(1,3)} shown in Fig. 6(b)

1S
0 1 -1 0
0,5 1 0 -1

JULY 2010, Vol. 132 / 071007-5

(12)

5 Optimal Partitioning and Coordination Decisions
for Parallel ALC

Section 4 demonstrated that the set of consistency constraints
used for a linking variable must connect associated subproblems
using a tree structure to meet ALC convergence and system con-
sistency requirements. Determining consistency constraint struc-
ture for every linking variable is an important coordination deci-
sion, and influences the computational expense and reliability of
an ALC implementation. This section extends the optimal parti-
tioning and coordination method presented in Ref. [2] by includ-
ing linking structure decisions along with partitioning and se-
quencing decisions.

If v; is the number of subproblems linked by the ith external
linking variable, then the number of valid options for allocating
consistency constraints for this variable is the number of unique
spanning trees for a graph with v; vertices, or vi”"_z. If n, is the
number of external linking variables in a problem, then

_ - 2 w2, S
U 2. V) 207507 is the number of alternative linking

n_—1 .
structure options for a problem with a given system partition. The
number of linking structure alternatives in a problem can be re-
duced by exploiting the natural structure present in coupling vari-
able relationships. An analysis function output that is a coupling
variable may be communicated to one or more analysis functions.
All analysis functions receiving this coupling variable as an input
link directly to the analysis function that computes the coupling
variable; this structure forms a star graph, which is a spanning
tree. While it is possible to use other trees for coupling variable
consistency constraints, we assume here that the naturally occur-
ring star graph is the consistency constraint graph used for each
coupling variable. This reduces the number of trees that must be
determined to the number of shared design variables.

Two important factors contribute to overall ALC computational
expense: coordination problem difficulty and subproblem diffi-
culty. An intrinsic tradeoff exists between these two factors; fine
partitions may have lower subproblem expense, but can incur
higher coordination expense due to more complicated external
linking relationships. A metric for optimization problem size is
used here to estimate subproblem expense. Coordination expense
is approximated using a metric based on the assumption that block
parallel Gauss—Seidel converges faster when linking variables in-
put to subproblems are recently computed. Jacobi iteration is one
extreme possibility where all input data are from the previous
iteration, whereas sequential Gauss—Seidel (FPI) uses the most
recently available data. Gauss—Seidel iteration is known to have
better global and local convergence properties than the Jacobi
iteration for linear systems [8], but Jacobi iteration offers advan-
tages for parallelism. These arguments do not always extend to
nonlinear systems, but are assumed to be reasonable in enabling a
priori partitioning and coordination decisions based on a system’s
reduced adjacency matrix.

Once a system partition is defined, the subproblem graph can be
constructed that describes external linking variable relationships,

along with its associated adjacency matrix. A is defined to be the
N XN valued adjacency matrix for a partitioned system’s subprob-
lem graph, where each entry indicates the dimension of the cor-
responding linking variable. For example, if g,«j=3, then the di-
mension of z; is 3. The coordination expense is estimated here
using CS, a metric for coordination problem size that accounts for
sequencing aspects of a coordination strategy:

Cs= E E gijA_ij

i=1 j=1

(13)

The value of ;; quantifies in how many stages previous to the
evaluation of subproblem i the linking variables z; were com-
puted. CS quantifies the number of linking variables in the coor-

071007-6 / Vol. 132, JULY 2010

dination problem, and also accounts for the length of time be-
tween linking variable calculation and its use as an input. The
metric §;; is defined as follows:

Si—;
§ij=

S
n'+s;=;

if 5;>s;
. (14)
if S; = Sj
where n*=max(s) is the stage depth (i.e., the number of stages in
the implementation).

A usual estimate for subproblem expense is subproblem size.
Previous approaches for quantifying subproblem size were based
only on the number of analysis functions or equations in each
subproblem (e.g., Ref. [16]). The metric used here is somewhat
more sophisticated, being based on optimization problem size.
The size of the optimization problem for subproblem i is defined
as:

8S;= ("fsi Tyt 1yt Nyp) + (”;ch +ny+ng) + (ng) (15)

The first four terms comprise the number of decision variables
in subproblem i. The number of external shared variables associ-
ated with subproblem i is ng i, the number of local variables is Ry, is
the number of internal coupling variables is ny;, and the number of
external input coupling variables is ny;. The next three terms ex-
press the number of consistency constraints in subproblem i. The
number of consistency constraints for external shared variables is
Rz cis the number of internal coupling variable consistency con-
straints is equal to n,;, and the number of consistency constraints
for external coupling variables is equal to ny;. The last term is the
number of analysis functions (n,;). The maximum subproblem
size for each stage is computed, and SS,,,, is the average of the
maximum subproblem sizes.

The optimal P/C decision problem for parallel ALC with link-
ing structure considerations is to minimize simultaneously CS and
SSmax by selecting a system partition p, subproblem stage assign-
ment s, and a valid consistency constraint graph for each external
shared design variable. The length of the vector s is N, which
depends on p. This complication is handled easily when the opti-
mal P/C decision problem is solved with exhaustive enumeration.
The linking structure decisions depend also on p. System partition
changes the set of external shared design variables, and the sub-
problems associated with each external shared design variable. As
with stage assignment, linking structure can be handled with ex-
haustive enumeration. An evolutionary algorithm for making par-
titioning and coordination decisions was introduced in Ref. [17],
and can handle this type of decision variable dependence.

A set-valued decision variable C is defined for the purpose of
representing problem linking structure. The cardinality of C is
equal to the number of external shared design variables in a prob-
lem with a given partition. Each member of this set defines the
consistency constraint graph for one of the shared variables. One
approach to representing a consistency constraint graph, which
must be a spanning tree, is with an edge set. For example, the
variable x; in Fig. 3 is shared between P, P,, and P;, but the
constraints on x; appear only in ¢, and ¢;3, which are the consis-
tency constraints connecting P with P, and P; with P3, respec-
tively. The edge set corresponding to these constraints for x; is
{(1,2),(1,3)}. By convention, edges are represented using or-
dered pairs (i,j) such that i <j. This way each edge has only one
representation.

Now that we have defined the two objective functions and the
P/C decision variables, we can state formally the optimal P/C
problem:

min{CS,SS,,,.}
p.s.C

(16)

The solution to this problem is a set of Pareto-optimal P/C
decision alternatives. This Pareto set helps assess the intrinsic

Transactions of the ASME

Downloaded 17 Jun 2010 to 144.212.3.4. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

Stage |

Stge 1 o)
age P
Stage 2
Stagc 1 eee
) eee
WPL 50 .0 ..
e & 0o
ee
Stage 2 @ .o
g P o :
or
“ 30 .
© L]
S I @ 3 .o
£
age P2 20 e o
I N 2)
10F
Stage 2
10 12 14 16

18
AvgSs

Fig. 7 ALC P/C results for electric water pump problem

tradeoffs in the optimal P/C problem. Note that specifying p, s,
and C defines completely a parallel ALC partition, coordination
algorithm, and set of subproblem formulations.

6 Example: Electric Water Pump Design Problem

The partitioning and coordination decision method for ALC de-
scribed above was applied to the electric water pump design prob-
lem introduced in Ref. [2] and detailed in Ref. [18]. This example
system is relatively small (large, nonproprietary models are diffi-
cult to obtain), but illustrates adeptly the proposed technique for
P/C decision-making with linking structure considerations. This
design problem involves a centrifugal pump for an automotive
cooling system driven by an electric motor. The design objective
is to reduce electric power consumption, subject to performance,
thermal, and geometric constraints. The optimal pump consumes
140 W during operation, compared with 300 W consumed by a
traditional belt-driven water pump. The reduced adjacency matrix
for the problem is the only information needed to solve the prob-
lem in Eq. (16) above.

|a1 dp d3 44 X| Xy X3 X4 X5 X X7 Xg Xg Xy

a0 110 1 1 1 1 1 0 0 0 0 O

A=a,(1 0 0 1 1 1 1 1 0 0 0 0 0 O

azl1 1.0 0 1. 1.1 1.1 0 0 0 0 O

a0 01 0 0 0000 1 1 1 1 1
(17)

The analysis functions a;_4 evaluate motor temperature 7, motor
current /, motor speed w, and pump drive torque 7, respectively.
Design variables x;_s describe motor geometry, and x4_;o describe
pump geometry. Using exhaustive enumeration of all p, s, and C
combinations for this problem, 9295 unique partitioning and co-
ordination alternatives were identified, and two Pareto-optimal
points were found. All instances are displayed in the CS—SS .«
space in Fig. 7, and all partitioning and stage assignment options
that correspond to three of these points are shown.

Point 1. Two P/C decision instances correspond to point 1 in
Fig. 7, and all share the same partition and problem size metrics:

Journal of Mechanical Design

CS=2, SS.x=11, and p=[1,1,1,2]. Neither instance has any
shared design variables, but can be distinguished by subproblem
stage assignment: Instance 1: s=[1,2] and Instance 2: s=[2,1].
These instances reflect a physical partition between the functions
that depend on the motor design variables, and the function that
depends on the pump design variables. This is an intuitive result,
but partitioning by physical system may not always be preferred.
In this case, there are no shared variables between the physical
subsystems, so there is an obvious advantage to this partition. This
may not always be true: Physical subsystems may have interfaces
that result in shared design variables, complicating P/C decisions.

Point 2. The single subproblem case, where CS=0 and SS,.«
=20, is represented by point 2. Note that numerous P/C instances
exist with larger subproblem sizes and nonzero coordination prob-
lem sizes. These points represent especially poor options for con-
structing an ALC formulation of the electric water pump problem.
Moving from point 2 to point 1 reduces SS,,,x from 20 to 11, and
requires a coordination problem size of just 2. This indicates a
problem formulation that is a good candidate for decomposition-
based optimization because dividing the system into two subprob-
lems stands to reduce subproblem computational expense substan-
tially, while incurring only nominal coordination expense.

Point 3. A third point, not in the Pareto set, is examined for
illustrative purposes. Point 3 corresponds to 12 unique P/C in-
stances, all with the same partition and problem size metrics:
CS=30, SS,,.x=18, and p=[1,2,3,2]. All 12 instances have the
same set of external shared design variables: {x;,x,,x3,%4,X5}.
The first four are shared between three subproblems, so several
consistency constraint allocation options exist. One possible set of
valid consistency constraint graphs, with corresponding edge sets,
is shown in Fig. 8.

The 12 instances that correspond to point 3 are distinguished by
consistency constraint allocation and stage assignment. The two
stage assignments that appear here are Instances 1-6: s=[1,1,2]
and Instances 7-12: s=[2,2,1]. These stage assignments are il-
lustrated in Fig. 7, and both specify parallel solution of subprob-
lems 1 and 2. No Pareto-optimal points specify parallel subprob-
lem solution. This is due to both problem structure and the

JULY 2010, Vol. 132 / 071007-7

Downloaded 17 Jun 2010 to 144.212.3.4. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

T T x3

(1213) {, 2,1,3) 1323)
g Zs5
(1,3,2,3) (1,3)

Fig. 8 Consistency constraint allocation option for point 3

problem size metrics selected. At point 1 we see that had we
placed both subproblems in Stage 1 for a parallel solution, the
time between calculation and use of some linking variables would
have actually increased, increasing CS. Only CS penalizes stage
depth (i.e., the number of stages in a parallel implementation).
Other size metrics have been explored, such as the sum of all
maximum subproblem sizes for each stage (£SS,,,,). This metric
penalizes stage depth, and when employed along with CS, the
resulting Pareto set contains only single-stage P/C alternatives. An
ideal metric would be an accurate estimate of computational ex-
pense, including speedup for parallelism. Since this is impractical
to compute a priori for most problems, approximate metrics must
be used.

7 Conclusion

This work established an approach for constructing problem
formulations for decomposition-based design optimization, and a
possible set of metrics was proposed (i.e., CS and SS,,,,). These
metrics approximate two competing sources of computational ex-
pense: coordination problem and subproblem solution expenses. A
new formulation technique for parallel ALC implementations was
introduced, and used to study linking structure decisions. ALC
linking structure is defined by the way consistency constraints on
linking variables are allocated throughout a system design prob-
lem. Graph theory and constraint satisfaction techniques were
used to identify valid consistency constraint allocation options for
ALC. This development enables inclusion of linking structure de-
cisions with the optimal partitioning and coordination decision
problem for ALC; it extends previous P/C decision methods,
which accounted only for partitioning and sequencing decisions;
and it may help system designers take full advantage of ALC
linking structure flexibility to tailor solution methods to system
structure. Several open questions have been identified presenting
opportunities for future work, including convergence analysis,

071007-8 / Vol. 132, JULY 2010

handling of larger size problems, investigation of alternative prob-
lem size metrics, inclusion of coupling variable consistency con-
straint allocation in the coordination decision problem, analysis of
linking structure for other system optimization formulations (such
as ALC with linking functions), and demonstration on problems of
sufficient complexity that would defy the designer’s intuition.

Acknowledgment

This work was partially supported by a U.S. NSF Graduate
Research Fellowship and by the Automotive Research Center, a
U.S. Army Center of Excellence at the University of Michigan.
This support is gratefully acknowledged. The work of J.T.A. was
conducted while at the University of Michigan.

References

[1] Stanton, D., and White, D.,
Verlag, New York.

[2] Allison, J. T., Kokkolaras, M., and Papalambros, P. Y., 2009, “Optimal Parti-
tioning and Coordination Decisions in Decomposition-Based Design Optimi-
zation,” ASME J. Mech. Des., 131(8), p. 081008.

[3] Braun, R. D., 1996, “Collaborative Optimization: An Architecture for Large-
Scale Distributed Design,” Ph.D. thesis, Stanford University, Stanford, CA.

[4] Kim, H. M., Michelena, N. F., Papalambros, P. Y., and Jiang, T., 2003, “Target
Cascading in Optimal System Design,” ASME J. Mech. Des., 125(3), pp.
474-480.

[5] Tosserams, S., Etman, L. F. P., and Rooda, J. E., 2007, “An Augmented La-
grangian Decomposition Method for Quasiseparable Problems in MDO,”
Struct. Multidiscip. Optim., 34(3), pp. 211-227.

[6] Tosserams, S., Etman, L. F. P., and Rooda, J. E., 2008, “Augmented Lagrang-
ian Coordination for Distributed Optimal Design in MDO,” Int. J. Numer.
Methods Eng., 73(13), pp. 1885-1910.

[7] Bertsekas, D. P., 1999, Nonlinear Programming, 2nd ed., Athena Scientific,
Belmont, MA.

[8] Bertsekas, D. P., and Tsitsiklis, J. N., 1997, Parallel and Distributed Compu-
tation: Numerical Methods, Athena Scientific, Belmont, MA.

[9] Montanari, U., 1974, “Networks of Constraints: Fundamental Properties and
Applications to Picture Processing,” Inf. Sci. (N.Y.), 7, pp. 95-132.

[10] Tsang, E., 1993, Foundations of Constraint Satisfaction, Academic, San Di-
ego, CA.

[11] Kusiak, A., Wang, J., and He, D. W., 1996, “Negotiation in Constraint-Based
Design,” ASME J. Mech. Des., 118, pp. 470-477.

[12] Schmidt, L. C., Shi, H., and Kerkar, S., 2005, “A Constraint Satisfaction Prob-
lem Approach Linking Function and Grammar-Based Design Generation to
Assembly,” ASME J. Mech. Des., 127, pp. 196-205.

[13] Hicks, B. J., Medland, A. J., and Mullineux, G., 2006, “The Representation
and Handling of Constraints for the Design, Analysis, and Optimization of
High Speed Machinery,” Artif. Intell. Eng. Des. Anal. Manuf., 20, pp. 131-
328.

[14] Mackworth, A. K., 1977, “Consistency in Networks of Relations,” Artif. In-
tell., 8(1), pp. 99-118.

[15] Oxley, J., 2003, “What Is a Matroid?,” Cubo Matemética Educacional, 5(3),
pp. 179-218.

[16] Michelena, N. F., and Papalambros, P. Y., 1997, “A Hypergraph Framework for
Optimal Model-Based Decomposition of Design Problems,” Comput. Optim.
Appl., 8(2), pp. 173-196.

[17] Allison, J. T., and Papalambros, P. Y., 2007, “Optimal Partitioning and Coor-
dination Decisions in System Design Using an Evolutionary Algorithm,” Pro-
ceedings of the Seventh World Conference on Structural and Multidisciplinary
Optimization, Seoul, South Korea, May 21-25.

[18] Allison, J. T., 2008, “Optimal Partitioning and Coordination Decisions in
Decomposition-Based Design Optimization,” Ph.D. thesis, University of
Michigan, Ann Arbor, MI.

1986, Constructive Combinatorics, Springer-

Transactions of the ASME

Downloaded 17 Jun 2010 to 144.212.3.4. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

